Model selection for time series of count data

Selecting between competing statistical models is a challenging problem especially when the competing models are non-nested. An effective algorithm is developed in a Bayesian framework for selecting between a parameter-driven autoregressive Poisson regression model and an observation-driven integer valued autoregressive model when modelling time series count data. In order to achieve this a particle MCMC algorithm for the autoregressive Poisson regression model is introduced. The particle filter underpinning the particle MCMC algorithm plays a key role in estimating the marginal likelihood of the autoregressive Poisson regression model via importance sampling and is also utilised to estimate the DIC. The performance of the model selection algorithms are assessed via a simulation study. Two real-life data sets, monthly US polio cases (1970–1983) and monthly benefit claims from the logging industry to the British Columbia Workers Compensation Board (1985–1994) are successfully analysed.

[1]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[2]  W. Dunsmuir,et al.  Observation-driven models for Poisson counts , 2003 .

[3]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[4]  P. Neal,et al.  Efficient order selection algorithms for integer‐valued ARMA processes , 2009 .

[5]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[6]  Eddie McKenzie,et al.  Discrete variate time series , 2003 .

[7]  W. Dunsmuir,et al.  On autocorrelation in a Poisson regression model , 2000 .

[8]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[9]  S. Chib,et al.  Marginal Likelihood From the Metropolis–Hastings Output , 2001 .

[10]  Fw Fred Steutel,et al.  Discrete analogues of self-decomposability and stability , 1979 .

[11]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[12]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[13]  M. Newton Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .

[14]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[15]  Harry Joe,et al.  Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning , 2006 .

[16]  Peter Neal,et al.  MCMC for Integer‐Valued ARMA processes , 2007 .

[17]  S. Chib Marginal Likelihood from the Gibbs Output , 1995 .

[18]  Tevfik Aktekin,et al.  Sequential Bayesian Analysis of Multivariate Count Data , 2016, Bayesian Analysis.

[19]  W. Dunsmuir Generalized Linear Autoregressive Moving Average Models , 2015 .

[20]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[21]  T. Rao,et al.  Integer valued AR processes with explanatory variables , 2009 .

[22]  Trevelyan J. McKinley,et al.  Efficient Model Comparison Techniques for Models Requiring Large Scale Data Augmentation , 2017, Bayesian Analysis.

[23]  Konstantinos Fokianos,et al.  Some recent progress in count time series , 2011 .

[24]  S. Zeger A regression model for time series of counts , 1988 .

[25]  G. Roberts,et al.  Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .

[26]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[27]  Siem Jan Koopman,et al.  Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives , 1999 .

[28]  Xiao-Li Meng,et al.  SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .

[29]  Nicholas G. Polson,et al.  Particle Learning and Smoothing , 2010, 1011.1098.

[30]  J. Rosenthal,et al.  On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.

[31]  R. Soyer,et al.  Assessment of mortgage default risk via Bayesian state space models , 2013, 1311.7261.

[32]  A. Pettitt,et al.  Marginal likelihood estimation via power posteriors , 2008 .

[33]  James G. Scott,et al.  Efficient Data Augmentation in Dynamic Models for Binary and Count Data , 2013, 1308.0774.

[34]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .