Model selection for time series of count data
暂无分享,去创建一个
Trevelyan J. McKinley | Peter Neal | Simon E. F. Spencer | Panayiota Touloupou | Naif Alzahrani | P. Neal | T. McKinley | S. Spencer | P. Touloupou | N. Alzahrani
[1] C. Robert,et al. Deviance information criteria for missing data models , 2006 .
[2] W. Dunsmuir,et al. Observation-driven models for Poisson counts , 2003 .
[3] S. Frühwirth-Schnatter. Data Augmentation and Dynamic Linear Models , 1994 .
[4] P. Neal,et al. Efficient order selection algorithms for integer‐valued ARMA processes , 2009 .
[5] R. Kohn,et al. On Gibbs sampling for state space models , 1994 .
[6] Eddie McKenzie,et al. Discrete variate time series , 2003 .
[7] W. Dunsmuir,et al. On autocorrelation in a Poisson regression model , 2000 .
[8] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[9] S. Chib,et al. Marginal Likelihood From the Metropolis–Hastings Output , 2001 .
[10] Fw Fred Steutel,et al. Discrete analogues of self-decomposability and stability , 1979 .
[11] A. Doucet,et al. Particle Markov chain Monte Carlo methods , 2010 .
[12] P. Green. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .
[13] M. Newton. Approximate Bayesian-inference With the Weighted Likelihood Bootstrap , 1994 .
[14] T. Hesterberg,et al. Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .
[15] Harry Joe,et al. Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning , 2006 .
[16] Peter Neal,et al. MCMC for Integer‐Valued ARMA processes , 2007 .
[17] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[18] Tevfik Aktekin,et al. Sequential Bayesian Analysis of Multivariate Count Data , 2016, Bayesian Analysis.
[19] W. Dunsmuir. Generalized Linear Autoregressive Moving Average Models , 2015 .
[20] C. Andrieu,et al. The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.
[21] T. Rao,et al. Integer valued AR processes with explanatory variables , 2009 .
[22] Trevelyan J. McKinley,et al. Efficient Model Comparison Techniques for Models Requiring Large Scale Data Augmentation , 2017, Bayesian Analysis.
[23] Konstantinos Fokianos,et al. Some recent progress in count time series , 2011 .
[24] S. Zeger. A regression model for time series of counts , 1988 .
[25] G. Roberts,et al. Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions , 2003 .
[26] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[27] Siem Jan Koopman,et al. Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives , 1999 .
[28] Xiao-Li Meng,et al. SIMULATING RATIOS OF NORMALIZING CONSTANTS VIA A SIMPLE IDENTITY: A THEORETICAL EXPLORATION , 1996 .
[29] Nicholas G. Polson,et al. Particle Learning and Smoothing , 2010, 1011.1098.
[30] J. Rosenthal,et al. On the efficiency of pseudo-marginal random walk Metropolis algorithms , 2013, The Annals of Statistics.
[31] R. Soyer,et al. Assessment of mortgage default risk via Bayesian state space models , 2013, 1311.7261.
[32] A. Pettitt,et al. Marginal likelihood estimation via power posteriors , 2008 .
[33] James G. Scott,et al. Efficient Data Augmentation in Dynamic Models for Binary and Count Data , 2013, 1308.0774.
[34] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .