Chemoenzymatic and Template-Directed Synthesis of Bioactive Macrocyclic Peptides

SUMMARY Non-ribosomally synthesized peptides have compelling biological activities ranging from antimicrobial to immunosuppressive and from cytostatic to antitumor. The broad spectrum of applications in modern medicine is reflected in the great structural diversity of these natural products. They contain unique building blocks, such as d-amino acids, fatty acids, sugar moieties, and heterocyclic elements, as well as halogenated, methylated, and formylated residues. In the past decades, significant progress has been made toward the understanding of the biosynthesis of these secondary metabolites by nonribosomal peptide synthetases (NRPSs) and their associated tailoring enzymes. Guided by this knowledge, researchers genetically redesigned the NRPS template to synthesize new peptide products. Moreover, chemoenzymatic strategies were developed to rationally engineer nonribosomal peptides products in order to increase or alter their bioactivities. Specifically, chemical synthesis combined with peptide cyclization mediated by nonribosomal thioesterase domains enabled the synthesis of glycosylated cyclopeptides, inhibitors of integrin receptors, peptide/polyketide hybrids, lipopeptide antibiotics, and streptogramin B antibiotics. In addition to the synthetic potential of these cyclization catalysts, which is the main focus of this review, different enzymes for tailoring of peptide scaffolds as well as the manipulation of carrier proteins with reporter-labeled coenzyme A analogs are discussed.

[1]  Vivian Miao,et al.  The lipopeptide antibiotic A54145 biosynthetic gene cluster from Streptomyces fradiae , 2006, Journal of Industrial Microbiology and Biotechnology.

[2]  M. Marahiel,et al.  Decreasing the ring size of a cyclic nonribosomal peptide antibiotic by in-frame module deletion in the biosynthetic genes. , 2002, Journal of the American Chemical Society.

[3]  H. Shapiro,et al.  Correlation of Daptomycin Bactericidal Activity and Membrane Depolarization in Staphylococcus aureus , 2003, Antimicrobial Agents and Chemotherapy.

[4]  F. Tally,et al.  Development of daptomycin for gram-positive infections. , 2000, The Journal of antimicrobial chemotherapy.

[5]  D. Storm,et al.  Binding of bacitracin to cells and protoplasts of Micrococcus lysodeikticus. , 1974, The Journal of biological chemistry.

[6]  Mohamed A. Marahiel,et al.  Modular Peptide Synthetases Involved in Nonribosomal Peptide Synthesis. , 1997, Chemical reviews.

[7]  N. Grammel,et al.  Construction and in vitro analysis of a new bi-modular polypeptide synthetase for synthesis of N-methylated acyl peptides. , 2000, Chemistry & biology.

[8]  C. Walsh,et al.  Robust in vitro activity of RebF and RebH, a two-component reductase/halogenase, generating 7-chlorotryptophan during rebeccamycin biosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Stuart L. Schreiber,et al.  Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes , 1991, Cell.

[10]  M. Kurz,et al.  Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. II. Isolation and structural characterization. , 2000, The Journal of antibiotics.

[11]  Christopher T Walsh,et al.  Polyketide and Nonribosomal Peptide Antibiotics: Modularity and Versatility , 2004, Science.

[12]  H. von Döhren,et al.  Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. , 1995, Biochemistry.

[13]  J. Finn,et al.  Synthesis and biological activity of N-Acylated ornithine analogues of daptomycin. , 2003, Bioorganic & medicinal chemistry letters.

[14]  Rolf Müller,et al.  Rational design of a bimodular model system for the investigation of heterocyclization in nonribosomal peptide biosynthesis. , 2004, Chemistry & biology.

[15]  Rajesh S. Gokhale,et al.  Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria , 2004, Nature.

[16]  P. Baker,et al.  A54145, a new lipopeptide antibiotic complex: isolation and characterization. , 1990, The Journal of antibiotics.

[17]  T. Mukhtar,et al.  Chimeric streptogramin-tyrocidine antibiotics that overcome streptogramin resistance. , 2005, Chemistry & biology.

[18]  C. Walsh,et al.  Glycopeptide and lipoglycopeptide antibiotics. , 2005, Chemical reviews.

[19]  Carsten Krebs,et al.  The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli. , 2003, Biochemistry.

[20]  G. Grandi,et al.  Characterization of the Syringomycin Synthetase Gene Cluster , 1998, The Journal of Biological Chemistry.

[21]  Norbert Sewald,et al.  Peptides: Chemistry and Biology: Sewald: Peptides E-BK , 2002 .

[22]  J. Finn,et al.  Array synthesis of novel lipodepsipeptide. , 2003, Bioorganic & medicinal chemistry letters.

[23]  C. Walsh,et al.  A chemoenzymatic approach to glycopeptide antibiotics. , 2004, Journal of the American Chemical Society.

[24]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[25]  G. Jung,et al.  Glycopeptide biosynthesis in Amycolatopsis mediterranei DSM5908: function of a halogenase and a haloperoxidase/perhydrolase. , 2002, Chemistry & biology.

[26]  C. Walsh,et al.  Single-cell FRET imaging of transferrin receptor trafficking dynamics by Sfp-catalyzed, site-specific protein labeling. , 2005, Chemistry & biology.

[27]  J. Micklefield,et al.  NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. , 2004, Organic & biomolecular chemistry.

[28]  M. Marahiel,et al.  Nonribosomal peptides: from genes to products. , 2003, Natural product reports.

[29]  T. Stachelhaus,et al.  Rational design of peptide antibiotics by targeted replacement of bacterial and fungal domains. , 1995, Science.

[30]  James J La Clair,et al.  In vivo reporter labeling of proteins via metabolic delivery of coenzyme A analogues. , 2005, Journal of the American Chemical Society.

[31]  Sascha Keller,et al.  Purification and Partial Characterization of Tryptophan 7-Halogenase (PrnA) from Pseudomonas fluorescens , 2000 .

[32]  N. Johnsson,et al.  Multicolor imaging of cell surface proteins. , 2005, Journal of the American Chemical Society.

[33]  D. M. Berry,et al.  A54145, a new lipopeptide antibiotic complex: discovery, taxonomy, fermentation and HPLC. , 1990, The Journal of antibiotics.

[34]  M. Marahiel,et al.  Solution structure of PCP, a prototype for the peptidyl carrier domains of modular peptide synthetases. , 2000, Structure.

[35]  Fei Liu,et al.  Labeling proteins with small molecules by site-specific posttranslational modification. , 2004, Journal of the American Chemical Society.

[36]  C. Walsh,et al.  Generation of D amino acid residues in assembly of arthrofactin by dual condensation/epimerization domains. , 2005, Chemistry & biology.

[37]  S. Pascarella,et al.  In silico analysis of the adenylation domains of the freestanding enzymes belonging to the eucaryotic nonribosomal peptide synthetase‐like family , 2005, The FEBS journal.

[38]  C. Walsh,et al.  Epothilone biosynthesis: assembly of the methylthiazolylcarboxy starter unit on the EpoB subunit. , 2001, Chemistry & biology.

[39]  M. Marahiel,et al.  Multimodular biocatalysts for natural product assembly , 2001, Naturwissenschaften.

[40]  C. Walsh Molecular mechanisms that confer antibacterial drug resistance , 2000, Nature.

[41]  H. Blöcker,et al.  New Lessons for Combinatorial Biosynthesis from Myxobacteria , 1999, The Journal of Biological Chemistry.

[42]  Christopher T. Walsh,et al.  The structure of VibH represents nonribosomal peptide synthetase condensation, cyclization and epimerization domains , 2002, Nature Structural Biology.

[43]  D. Storm,et al.  Complex formation between bacitracin peptides and isoprenyl pyrophosphates. The specificity of lipid-peptide interactions. , 1973, Journal of Biological Chemistry.

[44]  J. Davies The cyclization of peptides and depsipeptides , 2003, Journal of peptide science : an official publication of the European Peptide Society.

[45]  M. Marahiel,et al.  Generality of peptide cyclization catalyzed by isolated thioesterase domains of nonribosomal peptide synthetases. , 2001, Biochemistry.

[46]  M. Marahiel,et al.  Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[47]  T. Walk,et al.  New Advances in the Biosynthesis of Glycopeptide Antibiotics of the Vancomycin Type from Amycolatopsis mediterranei. , 1999, Angewandte Chemie.

[48]  V. de Crécy-Lagard,et al.  Pristinamycin I biosynthesis in Streptomyces pristinaespiralis: molecular characterization of the first two structural peptide synthetase genes , 1997, Journal of bacteriology.

[49]  Wen Liu,et al.  Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 , 2002, Science.

[50]  T. Stachelhaus,et al.  Targeted alteration of the substrate specificity of peptide synthetases by rational module swapping , 1998, Molecular and General Genetics MGG.

[51]  M. Marahiel,et al.  The dhb Operon of Bacillus subtilisEncodes the Biosynthetic Template for the Catecholic Siderophore 2,3-Dihydroxybenzoate-Glycine-Threonine Trimeric Ester Bacillibactin* , 2001, The Journal of Biological Chemistry.

[52]  W. Aretz,et al.  Friulimicins: novel lipopeptide antibiotics with peptidoglycan synthesis inhibiting activity from Actinoplanes friuliensis sp. nov. I. Taxonomic studies of the producing microorganism and fermentation. , 2000, The Journal of antibiotics.

[53]  B. Moore,et al.  Cloning, sequencing, and biochemical characterization of the nostocyclopeptide biosynthetic gene cluster: molecular basis for imine macrocyclization. , 2004, Gene.

[54]  V. Massey Activation of molecular oxygen by flavins and flavoproteins. , 1994, The Journal of biological chemistry.

[55]  M. Marahiel,et al.  Characterization of the surfactin synthetase C-terminal thioesterase domain as a cyclic depsipeptide synthase. , 2002, Biochemistry.

[56]  C. Walsh,et al.  SyrB2 in syringomycin E biosynthesis is a nonheme FeII alpha-ketoglutarate- and O2-dependent halogenase. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  C. Walsh,et al.  The thioesterase domain from a nonribosomal peptide synthetase as a cyclization catalyst for integrin binding peptides , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[58]  B. Barrell,et al.  Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2) , 2002, Nature.

[59]  F. Lipmann Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. , 1980, Advances in microbial physiology.

[60]  M. Marahiel,et al.  The Linear Pentadecapeptide Gramicidin Is Assembled by Four Multimodular Nonribosomal Peptide Synthetases That Comprise 16 Modules with 56 Catalytic Domains* , 2004, Journal of Biological Chemistry.

[61]  Nicholas J Turner,et al.  Enzyme catalysed deracemisation and dynamic kinetic resolution reactions. , 2004, Current opinion in chemical biology.

[62]  W. A. van der Donk,et al.  Biosynthesis and mode of action of lantibiotics. , 2005, Chemical reviews.

[63]  Michael D. Burkart,et al.  Biomimetic synthesis and optimization of cyclic peptide antibiotics , 2002, Nature.

[64]  B. Shen,et al.  An oxidation domain in the BlmIII non-ribosomal peptide synthetase probably catalyzing thiazole formation in the biosynthesis of the anti-tumor drug bleomycin in Streptomyces verticillus ATCC15003. , 2000, FEMS microbiology letters.

[65]  Timothy L. Foley,et al.  Manipulation of carrier proteins in antibiotic biosynthesis. , 2004, Chemistry & biology.

[66]  C. Walsh,et al.  Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. , 1998, Biochemistry.

[67]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[68]  R. Roskoski,et al.  Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. , 2006, Advances in enzymology and related areas of molecular biology.

[69]  S. Payne,et al.  Cloning of a Vibrio cholerae vibriobactin gene cluster: identification of genes required for early steps in siderophore biosynthesis , 1997, Journal of bacteriology.

[70]  J. Micklefield Daptomycin structure and mechanism of action revealed. , 2004, Chemistry & biology.

[71]  N. Johnsson,et al.  Specific labeling of cell surface proteins with chemically diverse compounds. , 2004, Journal of the American Chemical Society.

[72]  R. Moore,et al.  Isolation and structure determination of nostocyclopeptides A1 and A2 from the terrestrial cyanobacterium Nostoc sp. ATCC53789. , 2001, Journal of natural products.

[73]  T. Stachelhaus,et al.  Exploitation of the selectivity-conferring code of nonribosomal peptide synthetases for the rational design of novel peptide antibiotics. , 2002, Biochemistry.

[74]  J. L. La Clair,et al.  Fluorescent Multiplex Analysis of Carrier Protein Post‐Translational Modification , 2005, Chembiochem : a European journal of chemical biology.

[75]  William H Gerwick,et al.  Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. , 2004, Chemistry & biology.

[76]  S. Richter,et al.  The in vitro activity of daptomycin against Staphylococcus aureus and Enterococcus species. , 2003, The Journal of antimicrobial chemotherapy.

[77]  T. Luft,et al.  Clorobiocin biosynthesis in Streptomyces: identification of the halogenase and generation of structural analogs. , 2003, Chemistry & biology.

[78]  C. Walsh,et al.  Cryptic chlorination by a non-haem iron enzyme during cyclopropyl amino acid biosynthesis , 2005, Nature.

[79]  R. Hancock,et al.  Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. , 2004, Chemistry & biology.

[80]  D. Banerjee,et al.  Amphomycin: effect of the lipopeptide antibiotic on the glycosylation and extraction of dolichyl monophosphate in calf brain membranes. , 1981, Biochemistry.

[81]  M. Marahiel,et al.  Peptide cyclization catalysed by the thioesterase domain of tyrocidine synthetase , 2000, Nature.

[82]  M. Marahiel,et al.  A new enzyme superfamily - the phosphopantetheinyl transferases. , 1996, Chemistry & biology.

[83]  C. Walsh,et al.  Enhanced macrocyclizing activity of the thioesterase from tyrocidine synthetase in presence of nonionic detergent. , 2004, Chemistry & biology.

[84]  Rahul M Kohli,et al.  Enzymology of acyl chain macrocyclization in natural product biosynthesis. , 2003, Chemical communications.

[85]  N. Sewald,et al.  Peptides: Chemistry and Biology , 2002 .

[86]  V. Gnau,et al.  CDA: Calcium-Dependent Peptide Antibiotics from Streptomyces coelicolor A3(2) Containing Unusual Residues†‡ , 1997 .

[87]  S. Gould,et al.  Characterization of the Pyoluteorin Biosynthetic Gene Cluster of Pseudomonas fluorescens Pf-5 , 1999, Journal of bacteriology.

[88]  Robert Finking,et al.  Biosynthesis of nonribosomal peptides1. , 2004, Annual review of microbiology.

[89]  Zachary Q. Beck,et al.  Chemoenzymatic synthesis of cryptophycin/arenastatin natural products. , 2005, Biochemistry.

[90]  S. Jackowski,et al.  Biosynthesis of Pantothenic Acid and Coenzyme A , 2007, EcoSal Plus.

[91]  M. Marahiel,et al.  Ways of Assembling Complex Natural Products on Modular Nonribosomal Peptide Synthetases , 2002, Chembiochem : a European journal of chemical biology.

[92]  J. Lakey,et al.  Fluorescence indicates a calcium-dependent interaction between the lipopeptide antibiotic LY146032 and phospholipid membranes. , 1988, Biochemistry.

[93]  M. Marahiel,et al.  How do peptide synthetases generate structural diversity? , 1999, Chemistry & biology.

[94]  D. Ehmann,et al.  The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[95]  M. Marahiel,et al.  Learning from Nature's Drug Factories: Nonribosomal Synthesisof MacrocyclicPeptides , 2003, Journal of bacteriology.

[96]  Christopher J. Silva,et al.  Daptomycin biosynthesis in Streptomyces roseosporus: cloning and analysis of the gene cluster and revision of peptide stereochemistry. , 2005, Microbiology.

[97]  M. Marahiel,et al.  Chemoenzymatic approach to enantiopure streptogramin B variants: characterization of stereoselective pristinamycin I cyclase from Streptomyces pristinaespiralis. , 2005, Journal of the American Chemical Society.

[98]  B. Shen,et al.  Oxidase domains in epothilone and bleomycin biosynthesis: thiazoline to thiazole oxidation during chain elongation. , 2003, Biochemistry.

[99]  P. Dorrestein,et al.  Dichlorination of a pyrrolyl-S-carrier protein by FADH2-dependent halogenase PltA during pyoluteorin biosynthesis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[100]  M. Marahiel,et al.  Loading peptidyl-coenzyme A onto peptidyl carrier proteins: a novel approach in characterizing macrocyclization by thioesterase domains. , 2003, Journal of the American Chemical Society.

[101]  M. Marahiel,et al.  Peptidyl thiophenols as substrates for nonribosomal peptide cyclases. , 2004, Angewandte Chemie.

[102]  T. Stein,et al.  The Multiple Carrier Model of Nonribosomal Peptide Biosynthesis at Modular Multienzymatic Templates* , 1996, The Journal of Biological Chemistry.

[103]  M. Marahiel,et al.  Reactions catalyzed by mature and recombinant nonribosomal peptide synthetases. , 2004, Methods in enzymology.

[104]  M. Marahiel,et al.  Chirality of peptide bond-forming condensation domains in Nonribosomal peptide synthetases: The C5 domain of tyrocidine synthetase is a DCL catalyst , 2003 .

[105]  M. Marahiel,et al.  Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. , 2002, Structure.

[106]  C. Walsh,et al.  Type II Thioesterase Restores Activity of a NRPS Module Stalled with an Aminoacyl‐S‐enzyme that Cannot Be Elongated , 2004, Chembiochem : a European journal of chemical biology.

[107]  R. Dieckmann,et al.  Expression of an active adenylate‐forming domain of peptide synthetases corresponding to acyl‐CoA‐synthetases , 1995, FEBS letters.

[108]  J. Micklefield,et al.  Metabolic flux analysis for calcium dependent antibiotic (CDA) production in Streptomyces coelicolor. , 2004, Metabolic engineering.

[109]  B. Shen,et al.  The biosynthetic gene cluster for the antitumor drug bleomycin from Streptomyces verticillus ATCC15003 supporting functional interactions between nonribosomal peptide synthetases and a polyketide synthase. , 2000, Chemistry & biology.

[110]  W. Wohlleben,et al.  New compounds by combining "modern" genomics and "old-fashioned" mutasynthesis. , 2002, Chemistry & biology.

[111]  M. Marahiel,et al.  Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. , 2005, Chemical reviews.

[112]  M. Marahiel,et al.  Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[113]  T. Stachelhaus,et al.  Biochemical characterization of peptidyl carrier protein (PCP), the thiolation domain of multifunctional peptide synthetases. , 1996, Chemistry & biology.

[114]  T. Stachelhaus,et al.  Aminoacyl-CoAs as probes of condensation domain selectivity in nonribosomal peptide synthesis. , 1999, Science.

[115]  Kira J Weissman,et al.  The structure of docking domains in modular polyketide synthases. , 2003, Chemistry & biology.

[116]  Robert Finking,et al.  Biosynthesis of nonribosomal peptides , 2003 .

[117]  G. Weber,et al.  Disruption of the cyclosporin synthetase gene of Tolypocladium niveum , 1994, Current Genetics.

[118]  M. Marahiel,et al.  Ebony, a Novel Nonribosomal Peptide Synthetase for β-Alanine Conjugation with Biogenic Amines in Drosophila* , 2003, Journal of Biological Chemistry.

[119]  T. Stachelhaus,et al.  Mutational analysis of the epimerization domain in the initiation module PheATE of gramicidin S synthetase. , 2000, Biochemistry.

[120]  J. Recktenwald,et al.  Identification and Analysis of the Balhimycin Biosynthetic Gene Cluster and Its Use for Manipulating Glycopeptide Biosynthesis in Amycolatopsis mediterranei DSM5908 , 1999, Antimicrobial Agents and Chemotherapy.

[121]  I. Dietzel,et al.  The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression. , 1998, Gene.

[122]  T. Stachelhaus,et al.  Peptide Bond Formation in Nonribosomal Peptide Biosynthesis , 1998, The Journal of Biological Chemistry.

[123]  K. Yagi,et al.  The amino acid sequence of the calmodulin obtained from sea anemone (metridium senile) muscle. , 1980, Biochemical and biophysical research communications.

[124]  P. Brick,et al.  Structural basis for the activation of phenylalanine in the non‐ribosomal biosynthesis of gramicidin S , 1997, The EMBO journal.

[125]  M. Marahiel,et al.  Synthesis and derivatization of daptomycin: a chemoenzymatic route to acidic lipopeptide antibiotics. , 2004, Journal of the American Chemical Society.

[126]  J. Lakey,et al.  Conformational change on calcium binding by the lipopeptide antibiotic amphomycin. A C.D. and monolayer study. , 1988, Biochemical and biophysical research communications.

[127]  Tadafumi Kato,et al.  Nutritional biochemistry: A new redox-cofactor vitamin for mammals , 2003, Nature.

[128]  S. Berger,et al.  A Glutamate Mutase Is Involved in the Biosynthesis of the Lipopeptide Antibiotic Friulimicin in Actinoplanes friuliensis , 2003, Antimicrobial Agents and Chemotherapy.

[129]  T. Velkov,et al.  Non-ribosomal peptide synthetases as technological platforms for the synthesis of highly modified peptide bioeffectors--Cyclosporin synthetase as a complex example. , 2003, Biotechnology annual review.

[130]  Stephen K. Wrigley,et al.  Combinatorial biosynthesis of lipopeptide antibiotics in Streptomyces roseosporus , 2006, Journal of Industrial Microbiology and Biotechnology.

[131]  M. Marahiel,et al.  Timing of epimerization and condensation reactions in nonribosomal peptide assembly lines: kinetic analysis of phenylalanine activating elongation modules of tyrocidine synthetase B. , 2002, Biochemistry.

[132]  C. Walsh,et al.  Chemoenzymatic route to macrocyclic hybrid peptide/polyketide-like molecules. , 2003, Journal of the American Chemical Society.

[133]  Fei Liu,et al.  Phagemid encoded small molecules for high throughput screening of chemical libraries. , 2004, Journal of the American Chemical Society.

[134]  R. Molloy,et al.  Enzymatic and chemical modifications of lipopeptide antibiotic A21978C: the synthesis and evaluation of daptomycin (LY146032). , 1988, The Journal of antibiotics.

[135]  J. Trauger,et al.  Cyclization of backbone-substituted peptides catalyzed by the thioesterase domain from the tyrocidine nonribosomal peptide synthetase. , 2001, Biochemistry.

[136]  W. Gerwick,et al.  The barbamide biosynthetic gene cluster: a novel marine cyanobacterial system of mixed polyketide synthase (PKS)-non-ribosomal peptide synthetase (NRPS) origin involving an unusual trichloroleucyl starter unit. , 2002, Gene.

[137]  C. Walsh,et al.  Epothilone C macrolactonization and hydrolysis are catalyzed by the isolated thioesterase domain of epothilone polyketide synthase. , 2003, Journal of the American Chemical Society.

[138]  M. Marahiel,et al.  Mutational analysis of the C-domain in nonribosomal peptide synthesis. , 2002, European journal of biochemistry.

[139]  Y. Asano,et al.  3-Methylaspartate ammonia-lyase as a marker enzyme of the mesaconate pathway for (S)-glutamate fermentation in Enterobacteriaceae , 1997, Archives of Microbiology.

[140]  John A. Robinson,et al.  An oxidative phenol coupling reaction catalyzed by oxyB, a cytochrome P450 from the vancomycin-producing microorganism. , 2004, Angewandte Chemie.

[141]  D. A. Thayer,et al.  Macrolactamization of glycosylated peptide thioesters by the thioesterase domain of tyrocidine synthetase. , 2004, Chemistry & biology.

[142]  T. Stachelhaus,et al.  The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. , 1999, Chemistry & biology.

[143]  G. Jung,et al.  Fluorobalhimycin--a new chapter in glycopeptide antibiotic research. , 2002, Angewandte Chemie.

[144]  T. Stachelhaus,et al.  Selective interaction between nonribosomal peptide synthetases is facilitated by short communication-mediating domains. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[145]  K. van Pée,et al.  A novel halogenase gene from the pentachloropseudilin producer Actinoplanes sp. ATCC 33002 and detection of in vitro halogenase activity. , 2004, FEMS microbiology letters.

[146]  J. Micklefield,et al.  Active-site modifications of adenylation domains lead to hydrolysis of upstream nonribosomal peptidyl thioester intermediates. , 2004, Journal of the American Chemical Society.

[147]  L. Flancbaum,et al.  Existence of carcinine, a histamine-related compound, in mammalian tissues. , 1990, Life sciences.

[148]  M. Marahiel,et al.  Construction of hybrid peptide synthetases by module and domain fusions. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[149]  W. Buckel Unusual enzymes involved in five pathways of glutamate fermentation , 2001, Applied Microbiology and Biotechnology.

[150]  B. Shen,et al.  Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. , 2001, Metabolic engineering.

[151]  M. Schirle,et al.  The Biosynthesis of Vancomycin‐Type Glycopeptide Antibiotics — The Order of the Cyclization Steps. , 2002 .

[152]  D. Williams,et al.  The structure and mode of action of glycopeptide antibiotics of the vancomycin group. , 1984, Annual review of microbiology.

[153]  R. Jones,et al.  Antimicrobial activity and spectrum of LY146032, a lipopeptide antibiotic, including susceptibility testing recommendations , 1987, Antimicrobial Agents and Chemotherapy.

[154]  H. Kleinkauf,et al.  Purification and characterization of eucaryotic alanine racemase acting as key enzyme in cyclosporin biosynthesis. , 1994, The Journal of biological chemistry.

[155]  R. Süssmuth,et al.  Biosynthesis of Chloro-β-Hydroxytyrosine, a Nonproteinogenic Amino Acid of the Peptidic Backbone of Glycopeptide Antibiotics , 2004, Journal of bacteriology.

[156]  R. Kagan,et al.  Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. , 1994, Archives of biochemistry and biophysics.

[157]  M. Marahiel,et al.  Enzymatic Cyclisation of Peptidomimetics with Incorporated (E)‐Alkene Dipeptide Isosteres , 2004, Chembiochem : a European journal of chemical biology.

[158]  A. Harvey,et al.  Strategies for discovering drugs from previously unexplored natural products. , 2000, Drug discovery today.

[159]  M. Marahiel,et al.  Chemo- and regioselective peptide cyclization triggered by the N-terminal fatty acid chain length: the recombinant cyclase of the calcium-dependent antibiotic from Streptomyces coelicolor. , 2004, Biochemistry.

[160]  F. Kopp,et al.  Fluorescence resonance energy transfer as a probe of peptide cyclization catalyzed by nonribosomal thioesterase domains. , 2005, Chemistry & biology.

[161]  Jason Micklefield,et al.  Structure, biosynthetic origin, and engineered biosynthesis of calcium-dependent antibiotics from Streptomyces coelicolor. , 2002, Chemistry & biology.

[162]  J. Mccoy,et al.  A Thioredoxin Gene Fusion Expression System That Circumvents Inclusion Body Formation in the E. coli Cytoplasm , 1993, Bio/Technology.

[163]  R. Süssmuth,et al.  Bromobalhimycin and Chlorobromobalhimycins—Illuminating the Potential of Halogenases in Glycopeptide Antibiotic Biosyntheses , 2003, Chembiochem : a European journal of chemical biology.

[164]  Gene M. Brown,et al.  Biosynthesis of Pantothenic Acid and Coenzyme A , 1970 .

[165]  L. Gierasch,et al.  A well‐defined amphipathic conformation for the calcium‐free cyclic lipopeptide antibiotic, daptomycin, in aqueous solution , 2005, Biopolymers.