The Three-Wave Resonant Interaction Equations: Spectral and Numerical Methods

The spectral theory of the integrable partial differential equations which model the resonant interaction of three waves is considered with the purpose of numerically solving the direct spectral problem for both vanishing and non vanishing boundary values. Methods of computing both the continuum spectrum data and the discrete spectrum eigenvalues are given together with examples of such computations. The explicit spectral representation of the Manley-Rowe invariants is also displayed.

[1]  Phase Variation in Coherent-Optical-Pulse Propagation , 1973 .

[2]  Fabio Baronio,et al.  Stable control of pulse speed in parametric three-wave solitons. , 2006, Physical review letters.

[3]  S. Manakov Complete integrability and stochastization of discrete dynamical systems , 1974 .

[4]  Mark J. Ablowitz,et al.  Coherent pulse propagation, a dispersive, irreversible phenomenon , 1974 .

[5]  S. Wabnitz,et al.  Three-Wave Trapponic Solitons for Tunable High-Repetition Rate Pulse Train Generation , 2008, IEEE Journal of Quantum Electronics.

[6]  A. Reiman,et al.  Space-time evolution of nonlinear three-wave interactions. II. Interaction in an inhomogeneous medium , 1979 .

[7]  K. Pohlmeyer,et al.  Integrable Hamiltonian systems and interactions through quadratic constraints , 1976 .

[8]  Antonio Degasperis,et al.  Novel solution of the system describing the resonant interaction of three waves , 2005 .

[9]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[10]  A. Degasperis,et al.  Spectral transform and nonlinear evolution equations , 1978 .

[11]  N. Fisch,et al.  Storing, retrieving, and processing optical information by Raman backscattering in plasmas. , 2002, Physical review letters.

[12]  M. Ablowitz,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering , 1992 .

[13]  A. Mikhailov Integrability of the two-dimensional Thirring model , 1976 .

[14]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[15]  Mark J. Ablowitz,et al.  Method for Solving the Sine-Gordon Equation , 1973 .

[16]  Francesco Calogero,et al.  Spectral Transform and Solitons , 2012 .

[17]  Fabio Baronio,et al.  Parametric frequency conversion of short optical pulses controlled by a CW background. , 2007, Optics express.

[18]  Vincent Couderc,et al.  Velocity-locked solitary waves in quadratic media. , 2010, Physical review letters.

[19]  Fabio Baronio,et al.  Inelastic scattering and interactions of three-wave parametric solitons. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  A. Degasperis,et al.  Multicomponent integrable wave equations: II. Soliton solutions , 2009, 0907.1822.

[21]  D. J. Kaup,et al.  The Three-Wave Interaction-A Nondispersive Phenomenon , 1976 .

[22]  M. Wadati,et al.  The Exact Solution of the Modified Korteweg-de Vries Equation , 1972 .

[23]  Vladimir E. Zakharov,et al.  What Is Integrability , 1991 .

[24]  T. Regge,et al.  Unified Approach to Strings and Vortices with Soliton Solutions , 1976 .

[25]  M. Kruskal The Korteweg-de Vries equation and related evolution equations , 1974 .

[26]  J. Gibbon,et al.  Solitons and Nonlinear Wave Equations , 1982 .

[27]  Francesco Calogero,et al.  Why Are Certain Nonlinear PDEs Both Widely Applicable and Integrable , 1991 .

[28]  A. Picozzi,et al.  Spontaneous formation of symbiotic solitary waves in a backward quasi-phase-matched parametric oscillator. , 1998, Optics letters.

[29]  V. E. Zakharov,et al.  The theory of resonance interaction of wave packets in nonlinear media , 2011 .

[30]  A. V. Mikhaĭlov,et al.  Integrability of the two-dimensional generalization of Toda chain , 1979 .

[31]  J. Villarroel The DBAR problem and the Thirring model , 1991 .

[32]  Antonio Degasperis,et al.  Exact solutions of the 3-wave resonant interaction equation , 2006 .

[33]  Antonio Degasperis,et al.  Multicomponent integrable wave equations: I. Darboux-dressing transformation , 2006, nlin/0610061.

[34]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[35]  A. Fordy,et al.  Integrable nonlinear Klein-Gordon equations and Toda lattices , 1980 .

[36]  Vincent Couderc,et al.  Frequency generation and solitonic decay in three wave interactions. , 2009, Optics express.

[37]  M. Ablowitz,et al.  Resonantly coupled nonlinear evolution equations , 1975 .

[38]  John D. Gibbon,et al.  AnN-soliton solution of a nonlinear optics equation derived by a general inverse method , 1973 .

[39]  Alan C. Newell,et al.  Solitons in mathematics and physics , 1987 .

[40]  和達 三樹 M. J. Ablowitz and H. Segur: Solitons and the Inverse Scattering Transform, Society for Industrial and Applied Mathematics, Philadelphia, 1981, x+425ページ, 23.5×16.5cm, $54.40 (SIAM Studies in Applied Mathematics). , 1982 .

[41]  N. Fisch,et al.  Detuned raman amplification of short laser pulses in plasma , 2000, Physical review letters.