The beneficial effects of empagliflozin, an SGLT2 inhibitor, on atherosclerosis in ApoE−/− mice fed a western diet

[1]  T. Sulpice,et al.  Empagliflozin, via Switching Metabolism Toward Lipid Utilization, Moderately Increases LDL Cholesterol Levels Through Reduced LDL Catabolism , 2016, Diabetes.

[2]  A. Tsapas,et al.  Empagliflozin , Cardiovascular Outcomes , and Mortality in Type 2 Diabetes , 2015 .

[3]  R. Ahima,et al.  Pathophysiology of lipid droplet proteins in liver diseases. , 2016, Experimental cell research.

[4]  K. Koh,et al.  Mechanistic link between nonalcoholic fatty liver disease and cardiometabolic disorders. , 2015, International journal of cardiology.

[5]  T. Hirano,et al.  Amelioration of Hyperglycemia with a Sodium-Glucose Cotransporter 2 Inhibitor Prevents Macrophage-Driven Atherosclerosis through Macrophage Foam Cell Formation Suppression in Type 1 and Type 2 Diabetic Mice , 2015, PloS one.

[6]  J. Cruz,et al.  Adipokines, diabetes and atherosclerosis: an inflammatory association , 2015, Front. Physiol..

[7]  K. Park,et al.  Effect of a new PPAR-gamma agonist, lobeglitazone, on neointimal formation after balloon injury in rats and the development of atherosclerosis. , 2015, Atherosclerosis.

[8]  Ming Liu,et al.  Fibrates for secondary prevention of cardiovascular disease and stroke. , 2015, The Cochrane database of systematic reviews.

[9]  H. Watada,et al.  Effect of Repetitive Glucose Spike and Hypoglycaemia on Atherosclerosis and Death Rate in Apo E-Deficient Mice , 2015, International journal of endocrinology.

[10]  V. Vallon The mechanisms and therapeutic potential of SGLT2 inhibitors in diabetes mellitus. , 2015, Annual review of medicine.

[11]  J. M. Kumar,et al.  Metformin Inhibits Monocyte-to-Macrophage Differentiation via AMPK-Mediated Inhibition of STAT3 Activation: Potential Role in Atherosclerosis , 2014, Diabetes.

[12]  A. Tsapas,et al.  Efficacy and safety of empagliflozin for type 2 diabetes: a systematic review and meta‐analysis , 2014, Diabetes, obesity & metabolism.

[13]  M. Ridderstråle,et al.  Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. , 2014, The lancet. Diabetes & endocrinology.

[14]  V. Kakkar,et al.  Impact of MCP-1 in atherosclerosis. , 2014, Current pharmaceutical design.

[15]  J. Tune,et al.  Cardiovascular and hemodynamic effects of glucagon-like peptide-1 , 2014, Reviews in Endocrine and Metabolic Disorders.

[16]  Changhan Ouyang,et al.  C‐reactive protein promotes atherosclerosis by increasing LDL transcytosis across endothelial cells , 2014, British journal of pharmacology.

[17]  N. Hawkins,et al.  Dapagliflozin compared with other oral anti‐diabetes treatments when added to metformin monotherapy: a systematic review and network meta‐analysis , 2014, Diabetes, obesity & metabolism.

[18]  B. Zinman,et al.  Sodium-Glucose Cotransporter 2 Inhibition and Glycemic Control in Type 1 Diabetes: Results of an 8-Week Open-Label Proof-of-Concept Trial , 2014, Diabetes Care.

[19]  M. Quon,et al.  Modulation of adiponectin as a potential therapeutic strategy. , 2014, Atherosclerosis.

[20]  T. Heise,et al.  Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. , 2014, The Journal of clinical investigation.

[21]  G. Reaven,et al.  Identification of cardiometabolic risk: visceral adiposity index versus triglyceride/HDL cholesterol ratio. , 2014, The American journal of medicine.

[22]  A. Schürmann,et al.  Hepatic trans-Golgi action coordinated by the GTPase ARFRP1 is crucial for lipoprotein lipidation and assembly[S] , 2014, Journal of Lipid Research.

[23]  D. Matthews,et al.  Sodium–Glucose Cotransporter 2 Inhibitors for Type 2 Diabetes , 2013, Annals of Internal Medicine.

[24]  E. Ferrannini,et al.  A Phase IIb, randomized, placebo‐controlled study of the SGLT2 inhibitor empagliflozin in patients with type 2 diabetes , 2013, Diabetes, obesity & metabolism.

[25]  K. Kim,et al.  Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise , 2013, Diabetes, obesity & metabolism.

[26]  P. Leung,et al.  Effects of combining linagliptin treatment with BI-38335, a novel SGLT2 inhibitor, on pancreatic islet function and inflammation in db/db mice. , 2012, Current molecular medicine.

[27]  T. Murohara,et al.  Stress Augments Insulin Resistance and Prothrombotic State , 2012, Diabetes.

[28]  K. Park,et al.  Effect of a Dipeptidyl Peptidase-IV Inhibitor, Des-Fluoro-Sitagliptin, on Neointimal Formation after Balloon Injury in Rats , 2012, PloS one.

[29]  J. Kullberg,et al.  Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. , 2012, The Journal of clinical endocrinology and metabolism.

[30]  S. Uchida,et al.  TS‐071 is a novel, potent and selective renal sodium‐glucose cotransporter 2 (SGLT2) inhibitor with anti‐hyperglycaemic activity , 2011, British journal of pharmacology.

[31]  K. Park,et al.  Effect of S-adenosylmethionine on neointimal formation after balloon injury in obese diabetic rats. , 2011, Cardiovascular research.

[32]  C. Apovian,et al.  Reduced adipose tissue inflammation represents an intermediate cardiometabolic phenotype in obesity. , 2009, Journal of the American College of Cardiology.

[33]  V. DeClercq,et al.  Modulation of lipid droplet size and lipid droplet proteins by trans-10,cis-12 conjugated linoleic acid parallels improvements in hepatic steatosis in obese, insulin-resistant rats. , 2010, Biochimica et biophysica acta.

[34]  C. Anderson,et al.  Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure , 2010, Cardiovascular diabetology.

[35]  C. Bailey,et al.  Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial , 2010, The Lancet.

[36]  K. Naka,et al.  Pioglitazone vs glimepiride: Differential effects on vascular endothelial function in patients with type 2 diabetes. , 2009, Atherosclerosis.

[37]  M. Pfister,et al.  Dapagliflozin, a Novel, Selective SGLT2 Inhibitor, Improved Glycemic Control Over 2 Weeks in Patients With Type 2 Diabetes Mellitus , 2009, Clinical pharmacology and therapeutics.

[38]  Richard Donnelly,et al.  Sodium–glucose co‐transporter‐2 inhibitors: an emerging new class of oral antidiabetic drug , 2009, Diabetes, obesity & metabolism.

[39]  Enrique Morales,et al.  Sodium-Glucose Cotransport Inhibition With Dapagliflozin in Type 2 Diabetes , 2008, Diabetes Care.

[40]  C. Apovian,et al.  Adipose Macrophage Infiltration Is Associated With Insulin Resistance and Vascular Endothelial Dysfunction in Obese Subjects , 2008, Arteriosclerosis, thrombosis, and vascular biology.

[41]  J. Chan,et al.  Abnormal Liver Function Test Predicts Type 2 Diabetes , 2007, Diabetes Care.

[42]  Kenneth K. Wu,et al.  Diabetic atherosclerosis mouse models. , 2007, Atherosclerosis.

[43]  S. Haffner,et al.  Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. , 2006, JAMA.

[44]  S. Gordon,et al.  Monocyte and macrophage heterogeneity , 2005, Nature Reviews Immunology.

[45]  N. Lewis,et al.  Phlorizin: a review , 2005, Diabetes/metabolism research and reviews.

[46]  R. Turner,et al.  Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man , 1985, Diabetologia.

[47]  Philip A Kern,et al.  Adiponectin expression from human adipose tissue: relation to obesity, insulin resistance, and tumor necrosis factor-alpha expression. , 2003, Diabetes.

[48]  S. Kihara,et al.  Role of adipocytokines on the pathogenesis of atherosclerosis in visceral obesity. , 1999, Internal medicine.

[49]  M. Hediger,et al.  The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for D-glucose. , 1994, The Journal of clinical investigation.

[50]  R. DeFronzo,et al.  Normalization of blood glucose in diabetic rats with phlorizin treatment reverses insulin-resistant glucose transport in adipose cells without restoring glucose transporter gene expression. , 1991, The Journal of clinical investigation.

[51]  N. Jolliffe,et al.  THE ACTION OF PHLORIZIN ON THE EXCRETION OF GLUCOSE, XYLOSE, SUCROSE, CREATININE AND UREA BY MAN. , 1933, The Journal of clinical investigation.