Multiscale, multiparadigm modeling for nano systems characterization and design

This chapter outlines our progress toward developing a first-principles-based hierarchical multiscale, multiparadigm modeling and simulation framework for the characterization and optimization of electronic and chemical properties of nanoscale materials and devices. In our approach, we build from the bottom-up by solving the quantum-mechanical (QM) Schrodinger equation for small systems. The results of these calculations lead to physical parameters that feed into methods capable of spanning longer length and time scale with minimum loss of accuracy. This is achieved by having higher-scale quantities self-consistently derived and optimized from the results at finer scales. In contrast to other methods, we are strictly first-principles-based, and all of our parameters at all scales relate to physically measurable or QM-computable observables. Our approach that is applicable to the forward (materials phenomenology) and inverse (“materials by design”) problems. The inverse problem involves top-down predictions of structures and compositions at a lower scale from desired properties at a higher scale. The advantages of our strategy over experimental- and phenomenological-based modeling and simulation approaches include the following: (1) providing access to details that are difficult or impossible to measure (e.g., excited electronic states in materials undergoing extreme conditions of pressure, temperature, etc.); (2) the ability to make useful predictions outside the range of experiments (i.e., since all calculations are ultimately related to first principles); and (3) providing sound, first-principles-based, steering for experiments.

[1]  Wei-Qiao Deng,et al.  Mechanism of the Stoddart-Heath bistable rotaxane molecular switch. , 2004, Journal of the American Chemical Society.

[2]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997 .

[3]  N. Doltsinis,et al.  Nonadiabatic Car-Parrinello molecular dynamics. , 2002, Physical review letters.

[4]  Wei Wu,et al.  XMVB : A program for ab initio nonorthogonal valence bond computations , 2005, J. Comput. Chem..

[5]  W. Goddard,et al.  Proton diffusion pathways and rates in Y-doped BaZrO3 solid oxide electrolyte from quantum mechanics. , 2009, The Journal of chemical physics.

[6]  W. Goddard,et al.  Improved Non-Pt Alloys for the Oxygen Reduction Reaction at Fuel Cell Cathodes Predicted from Quantum Mechanics , 2010 .

[7]  Markus J Buehler,et al.  Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field. , 2006, Physical review letters.

[8]  Richard L. Martin,et al.  Energy band gaps and lattice parameters evaluated with the Heyd-Scuseria-Ernzerhof screened hybrid functional. , 2005, The Journal of chemical physics.

[9]  William A. Goddard,et al.  First-principles approach to the charge-transport characteristics of monolayer molecular-electronics devices : Application to hexanedithiolate devices , 2006 .

[10]  H. Kümmel,et al.  A BIOGRAPHY OF THE COUPLED CLUSTER METHOD , 2003 .

[11]  W. Goddard,et al.  Correlation‐consistent configuration interaction: Accurate bond dissociation energies from simple wave functions , 1988 .

[12]  Abhinandan Jain,et al.  A fast recursive algorithm for molecular dynamics simulation , 1993 .

[13]  M. Knaup,et al.  Wave packet molecular dynamics simulations of warm dense hydrogen , 2003 .

[14]  Weitao Yang,et al.  Fractional spins and static correlation error in density functional theory. , 2008, The Journal of chemical physics.

[15]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[16]  David L. Cooper,et al.  Modern Valence Bond Theory , 1997 .

[17]  J. Hunger,et al.  Optimization and analysis of force field parameters by combination of genetic algorithms and neural networks , 1999 .

[18]  D. Klakow,et al.  Semiclassical molecular dynamics for strongly coupled Coulomb systems , 1994 .

[19]  A. V. van Duin,et al.  Thermal decomposition of RDX from reactive molecular dynamics. , 2005, The Journal of chemical physics.

[20]  Ian Thomas. Harrison,et al.  Synthesis of a stable complex of a macrocycle and a threaded chain , 1967 .

[21]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[22]  D. Brenner,et al.  Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. , 1990, Physical review. B, Condensed matter.

[23]  J. G. Zabolitzky,et al.  Many-fermion theory in expS- (or coupled cluster) form , 1978 .

[24]  Alfons Crespo,et al.  A Unified Formulation for Massively Parallel Rigid Multibody Dynamics of O (log2n) Computational Complexity , 2002, J. Parallel Distributed Comput..

[25]  A. Carlo,et al.  Atomistic theory of transport in organic and inorganic nanostructures , 2004 .

[26]  B. Roos,et al.  MCSCF–CI calculations of the ground state potential curves of LiH, Li2, and F2 , 1981 .

[27]  A. V. van Duin,et al.  Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the ReaxFF reactive force field. , 2005, Journal of the American Chemical Society.

[28]  Anthony M. Dean,et al.  Importance of gas-phase kinetics within the anode channel of a solid-oxide fuel cell , 2004 .

[29]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[30]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[31]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[32]  William A. Goddard,et al.  An optimized initialization algorithm to ensure accuracy in quantum Monte Carlo calculations , 2008, J. Comput. Chem..

[33]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[34]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[35]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO–MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies , 1955 .

[36]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. III. Effects of Hybridization on Overlap and Gross AO Populations , 1955 .

[37]  W. Goddard,et al.  Generalized valence bond description of bonding in low-lying states of molecules , 1973 .

[38]  A. V. van Duin,et al.  ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation. , 2008, The journal of physical chemistry. A.

[39]  Yi Liu,et al.  Theoretical Study of Solvent Effects on the Platinum-Catalyzed Oxygen Reduction Reaction , 2010 .

[40]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[41]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[42]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[43]  H. Kümmel Origins of the Coupled Cluster Method , 1991 .

[44]  W. Goddard,et al.  The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cells , 1992 .

[45]  John P. Perdew,et al.  Physical Content of the Exact Kohn-Sham Orbital Energies: Band Gaps and Derivative Discontinuities , 1983 .

[46]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[47]  A. Laikhtman,et al.  Photon stimulated desorption of hydrogen from diamond surfaces via core-level excitations: fundamental processes and applications to surface studies , 2006 .

[48]  J. Los,et al.  Intrinsic long-range bond-order potential for carbon: Performance in Monte Carlo simulations of graphitization , 2003 .

[49]  E. Kaxiras,et al.  Environment-dependent interatomic potential for bulk silicon , 1997, cond-mat/9704137.

[50]  R A Abagyan,et al.  New methodology for computer-aided modelling of biomolecular structure and dynamics. 2. Local deformations and cycles. , 1989, Journal of biomolecular structure & dynamics.

[51]  S. Stuart,et al.  A reactive potential for hydrocarbons with intermolecular interactions , 2000 .

[52]  Clifford R. Johnson,et al.  Solution of a 20-Variable 3-SAT Problem on a DNA Computer , 2002, Science.

[53]  J. F. Stoddart,et al.  Toward electrochemically controllable tristable three-station [2]catenanes. , 2007, Chemistry, an Asian journal.

[54]  Weitao Yang,et al.  Localization and delocalization errors in density functional theory and implications for band-gap prediction. , 2007, Physical review letters.

[55]  J. C. Burant,et al.  Nonadiabatic dynamics via the classical limit Schrödinger equation , 2000 .

[56]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[57]  Zhijun Hu,et al.  Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. , 2009, Nature materials.

[58]  W. Goddard,et al.  Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx , 2006 .

[59]  Daeyeon Lee,et al.  Biologically templated photocatalytic nanostructures for sustained light-driven water oxidation. , 2010, Nature nanotechnology.

[60]  W. Goddard,et al.  Accurate Band Gaps for Semiconductors from Density Functional Theory , 2011 .

[61]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[62]  Qi An,et al.  Large‐scale, long‐term nonadiabatic electron molecular dynamics for describing material properties and phenomena in extreme environments , 2011, J. Comput. Chem..

[63]  A. V. van Duin,et al.  ReaxFF(MgH) reactive force field for magnesium hydride systems. , 2005, The journal of physical chemistry. A.

[64]  E. Haug,et al.  A recursive formulation constrained mechanical system dynamics. I: Open loop systems , 1987 .

[65]  W. Goddard,et al.  The dynamics of highly excited electronic systems: applications of the electron force field. , 2009, The Journal of chemical physics.

[66]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[67]  D. Sholl,et al.  A generalized surface hopping method , 1998 .

[68]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[69]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[70]  S. Hammes-Schiffer,et al.  Nonadiabatic transition state theory and multiple potential energy surface molecular dynamics of infrequent events , 1995 .

[71]  W. Goddard,et al.  Definitive Band Gaps for Single-Wall Carbon Nanotubes , 2010 .

[72]  Erik Winfree,et al.  Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. , 2010, Nature nanotechnology.

[73]  Wei-Qiao Deng,et al.  An electrochemical color-switchable RGB dye: tristable [2]catenane. , 2005, Journal of the American Chemical Society.

[74]  W. Goddard,et al.  Charge equilibration for molecular dynamics simulations , 1991 .

[75]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[76]  Abhinandan Jain,et al.  Constant temperature constrained molecular dynamics: The Newton-Euler inverse mass operator method , 1996 .

[77]  E. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part II. Closed Loop Systems , 1987 .

[78]  R. Kosloff,et al.  Atomistic-scale simulations of the initial chemical events in the thermal initiation of triacetonetriperoxide. , 2005, Journal of the American Chemical Society.

[79]  W. V. van Gunsteren,et al.  A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations , 2001 .

[80]  Juan Elezgaray,et al.  A systematic method to derive force fields for coarse-grained simulations of phospholipids , 2006, Comput. Phys. Commun..

[81]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[82]  H. C. Andersen Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations , 1983 .

[83]  J. Tully,et al.  Trajectory Surface Hopping Approach to Nonadiabatic Molecular Collisions: The Reaction of H+ with D2 , 1971 .

[84]  W. Goddard,et al.  Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions , 1992 .

[85]  Stefano Sanvito,et al.  Towards molecular spintronics , 2005, Nature materials.

[86]  A. V. Duin,et al.  Adhesion and nonwetting-wetting transition in the Al/alpha-Al_2O_3 interface , 2004 .

[87]  R. Abagyan,et al.  New methodology for computer-aided modelling of biomolecular structure and dynamics. 1. Non-cyclic structures. , 1989, Journal of biomolecular structure & dynamics.

[88]  A. V. van Duin,et al.  ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems. , 2008, The journal of physical chemistry. A.

[89]  Emily A Carter,et al.  Advances in correlated electronic structure methods for solids, surfaces, and nanostructures. , 2008, Annual review of physical chemistry.

[90]  E. Fermi,et al.  Zur Quantelung des idealen einatomigen Gases , 1926 .

[91]  A. V. van Duin,et al.  Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. , 2006, The journal of physical chemistry. B.

[92]  P. Kollman,et al.  An all atom force field for simulations of proteins and nucleic acids , 1986, Journal of computational chemistry.

[93]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[94]  Edward J. Haug,et al.  A Recursive Formulation for Constrained Mechanical System Dynamics: Part III. Parallel Processor Implementation , 1988 .

[95]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[96]  A. V. Duin,et al.  Mechanical properties of connected carbon nanorings via molecular dynamics simulation , 2005 .

[97]  J. Tully Molecular dynamics with electronic transitions , 1990 .

[98]  P. Hiberty,et al.  The distortive tendencies of π electronic systems, their relationship to isoelectronic σ bonded analogs, and observables: A description free of the classical paradoxes , 2004 .

[99]  Amos G. Anderson,et al.  Generalized valence bond wave functions in quantum Monte Carlo. , 2010, The Journal of chemical physics.

[100]  W. Goddard,et al.  Excited electron dynamics modeling of warm dense matter. , 2007, Physical review letters.

[101]  Weitao Yang,et al.  Fractional charge perspective on the band gap in density-functional theory , 2007, 0708.3175.

[102]  A. V. van Duin,et al.  Optimization and application of lithium parameters for the reactive force field, ReaxFF. , 2005, The journal of physical chemistry. A.

[103]  A. A. Frost,et al.  Floating Spherical Gaussian Orbital Model of Molecular Structure. II. One‐ and Two‐Electron‐Pair Systems , 1967 .

[104]  Stoddart−Heath [2]Rotaxane Molecular Switch Made Simple: A Density Functional Theory Study on Model Junction Devices , 2010 .

[105]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[106]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[107]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[108]  Orlando,et al.  Landauer's conductance formula and its generalization to finite voltages. , 1989, Physical review. B, Condensed matter.

[109]  W. Heisenberg,et al.  Zur Quantentheorie der Molekeln , 1924 .

[110]  Tahir Cagin,et al.  Molecular mechanics and molecular dynamics analysis of Drexler-Merkle gears and neon pump , 1998 .

[111]  Giuseppe Rodriguez,et al.  Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics , 1987, IEEE Journal on Robotics and Automation.

[112]  H. Berendsen,et al.  ALGORITHMS FOR MACROMOLECULAR DYNAMICS AND CONSTRAINT DYNAMICS , 1977 .

[113]  L. H. Thomas The calculation of atomic fields , 1927, Mathematical Proceedings of the Cambridge Philosophical Society.

[114]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[115]  C. Toepffer,et al.  Wave packet simulation of dense hydrogen. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[116]  J. Tully Mixed quantum–classical dynamics , 1998 .

[117]  Wilfried J. Mortier,et al.  Electronegativity-equalization method for the calculation of atomic charges in molecules , 1986 .

[118]  W. Goddard,et al.  First-Principles-Based Dispersion Augmented Density Functional Theory: From Molecules to Crystals , 2010 .

[119]  Weitao Yang,et al.  Insights into Current Limitations of Density Functional Theory , 2008, Science.

[120]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[121]  K. Martin,et al.  Low energy electron‐enhanced etching of Si(100) in hydrogen/helium direct‐current plasma , 1995 .

[122]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[123]  J. Tully,et al.  Mixed quantum-classical equilibrium. , 2005, The Journal of chemical physics.

[124]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[125]  Irwin Goodwin Academies Select Panel to Judge Ideal SSC Site , 1987 .

[126]  U. Radelof,et al.  How to Derive Force Field Parameters by Genetic Algorithms: Modelling tripod‐Mo(CO)3 Compounds as an Example , 1998 .

[127]  D. Klakow,et al.  Semiclassical Dynamics in a Fluctuating Potential , 1997 .