Dynamic time series smoothing for symbolic interval data applied to neuroscience

Abstract This work aimed to appraise a multivariate time series, high-dimensionality data-set, presented as intervals using a Symbolic Data Analysis (SDA) approach. SDA reduces data dimensionality, considering the complexity of the model information through a set-valued (interval or multi-valued). Additionally, Dynamic Linear Models (DLM) are distinguished by modeling univariate or multivariate time series in the presence of non-stationarity, structural changes and irregular patterns. We considered neurophysiological (EEG) data associated with experimental manipulation of verticality perception in humans, using transcranial electrical stimulation. The innovation of the present work is centered on use of a dynamic linear model with SDA methodology, and SDA applications for analyzing EEG data.

[1]  Giovanni Petris,et al.  Dynamic linear models , 2009 .

[2]  Francisco de A. T. de Carvalho,et al.  Centre and Range method for fitting a linear regression model to symbolic interval data , 2008, Comput. Stat. Data Anal..

[3]  L. Billard,et al.  From the Statistics of Data to the Statistics of Knowledge , 2003 .

[4]  Christian Cremona,et al.  Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts , 2012 .

[5]  Monique Noirhomme-Fraiture,et al.  Symbolic Data Analysis and the SODAS Software , 2008 .

[6]  George Athanasopoulos,et al.  Forecasting: principles and practice , 2013 .

[7]  Paola Zuccolotto Principal components of sample estimates: an approach through symbolic data analysis , 2007, Stat. Methods Appl..

[8]  Telmo de Menezes e Silva Filho,et al.  A parametrized approach for linear regression of interval data , 2017, Knowl. Based Syst..

[9]  Thomas E. Nichols,et al.  Searching Multiregression Dynamic Models of Resting-State fMRI Networks Using Integer Programming , 2015, 1505.06832.

[10]  L. Billard,et al.  Symbolic Regression Analysis , 2002 .

[11]  Peter Van Leeuwen,et al.  Strategies of symbolization in cardiovascular time series to test individual gestational development in the fetus , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Calyampudi Radhakrishna Rao,et al.  Bayesian thinking : modeling and computation , 2005 .

[13]  Costas Kravaris,et al.  Advances and selected recent developments in state and parameter estimation , 2013, Comput. Chem. Eng..

[14]  J. E. Fisher,et al.  The digital hospital: opportunities and challenges. , 2003, Journal of healthcare information management : JHIM.

[15]  Monique Noirhomme-Fraiture,et al.  Far beyond the classical data models: symbolic data analysis , 2011, Stat. Anal. Data Min..

[16]  Sotiris A. Pavlopoulos,et al.  Designing and implementing the transition to a fully digital hospital , 1999, IEEE Transactions on Information Technology in Biomedicine.

[17]  Aureli Soria-Frisch,et al.  Fusion operators for multi-modal biometric authentication based on physiological signals , 2010, International Conference on Fuzzy Systems.

[18]  N. Lassen,et al.  Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study. , 1991, Archives of general psychiatry.

[19]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[20]  Emilio Corchado,et al.  Recent trends in intelligent data analysis , 2014, Neurocomputing.

[21]  Renata M. C. R. de Souza,et al.  A weighted multivariate Fuzzy C-Means method in interval-valued scientific production data , 2014, Expert Syst. Appl..

[22]  Johannes Gehrke,et al.  Mining Very Large Databases , 1999, Computer.

[23]  Vibhav Gogate,et al.  On Lifting the Gibbs Sampling Algorithm , 2012, StarAI@UAI.

[24]  Edwin Diday,et al.  Symbolic Data Analysis: Conceptual Statistics and Data Mining (Wiley Series in Computational Statistics) , 2007 .

[25]  Yufeng Zang,et al.  Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders , 2010, Brain Research.

[26]  L. Billard,et al.  Regression Analysis for Interval-Valued Data , 2000 .

[27]  M. Bikson,et al.  Polarity-Dependent Misperception of Subjective Visual Vertical during and after Transcranial Direct Current Stimulation (tDCS) , 2016, PloS one.

[28]  Javier Arroyo,et al.  Time series modeling of histogram-valued data: The daily histogram time series of S&P500 intradaily returns , 2012 .

[29]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[30]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[31]  Iman Ghodrati Toostani,et al.  Manipulation of Human Verticality Using High-Definition Transcranial Direct Current Stimulation , 2018, Front. Neurol..

[32]  Junjie Wu,et al.  Linear regression of interval-valued data based on complete information in hypercubes , 2012 .

[33]  Edwin Diday,et al.  Thinking by classes in data science: the symbolic data analysis paradigm , 2016 .

[34]  Thomas E. Nichols,et al.  Studying the effective brain connectivity using multiregression dynamic models , 2017 .

[35]  Antonio Giusti,et al.  Cluster analysis of census data using the symbolic data approach , 2008, Adv. Data Anal. Classif..

[36]  James A. Rodger,et al.  Discovery of medical Big Data analytics: Improving the prediction of traumatic brain injury survival rates by data mining Patient Informatics Processing Software Hybrid Hadoop Hive , 2015 .

[37]  Tak-Chung Fu,et al.  A review on time series data mining , 2011, Eng. Appl. Artif. Intell..

[38]  Ann L. Owen,et al.  Estimating dynamic panel data models: a guide for , 1999 .

[39]  Renata M. C. R. de Souza,et al.  A robust method for linear regression of symbolic interval data , 2010, Pattern Recognit. Lett..

[40]  Yves Lechevallier,et al.  Mining Web Usage Data for Discovering Navigation Clusters , 2006, 11th IEEE Symposium on Computers and Communications (ISCC'06).

[41]  M. West,et al.  New methods of time series analysis of non-stationary EEG data: eigenstructure decompositions of time varying autoregressions , 1999, Clinical Neurophysiology.

[42]  M. Teplan FUNDAMENTALS OF EEG MEASUREMENT , 2002 .

[43]  Lynne Billard Some analyses of interval data , 2008, ITI 2008 - 30th International Conference on Information Technology Interfaces.

[44]  Karsten Keller,et al.  Symbolic Analysis of High-Dimensional Time Series , 2003, Int. J. Bifurc. Chaos.

[45]  Dennis Q. Truong,et al.  Center of Pressure Speed Changes with tDCS Versus GVS in Patients with Lateropulsion after Stroke , 2016, Brain Stimulation.

[46]  Renata M. C. R. de Souza,et al.  Robust regression with application to symbolic interval data , 2013, Eng. Appl. Artif. Intell..

[47]  Francisco de A. T. de Carvalho,et al.  An exponential-type kernel robust regression model for interval-valued variables , 2018, Inf. Sci..