Femtosecond petawatt laser

The high-power femtosecond laser has now become an excellent scientific tool for the study of not only relativistic laser–matter interactions but also scientific applications. The high-power femtosecond laser depends on the Kerr-lens modelocking (KLM) and chirped-pulse amplification (CPA) technique. An all-Ti:sapphire-based 30-fs PW CPA laser, which is called the PULSER (Petawatt Ultrashort Laser System for Extreme Science Research) has been recently constructed and is being used for accelerating the charged particles (electrons and protons) and generating ultrashort high-energy photon (X-ray and γ-ray) sources. In this review, the world-wide PW-level femtosecond laser systems are first summarized, the output performances of the PULSER-I & II are described, and the future upgrade plan of the PULSER to the multi-PW level is also discussed. Then, several experimental results on particle (electron and proton) acceleration and X-ray generation in the intensity range of mid-1018 W/cm2 to mid-1020 W/cm2 are described. Experimental demonstrations for the newly proposed phenomena and the understanding of physical mechanisms in relativistic and ultrarelativistic regimes are highly expected as increasing the laser peak intensity up to over 1022 W/cm2 ∼1023 W/cm2.

[1]  Design of a Femtosecond Ti:sapphire Laser for Generation and Temporal Optimization of 0.5-PW Laser Pulses at a 0.1-Hz Repetition Rate , 2009 .

[2]  Vladimir Chvykov,et al.  Large aperture multi-pass amplifiers for high peak power lasers , 2012 .

[3]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[4]  S. V. Bulanov,et al.  Optics in the relativistic regime , 2006 .

[5]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[6]  F. Kärtner,et al.  Self-starting soliton modelocked Ti-sapphire laser using a thin semiconductor saturable absorber , 1995 .

[7]  N. Hafz,et al.  Dependence of the electron beam parameters on the stability of laser propagation in a laser wakefield accelerator , 2007 .

[8]  T Shimomura,et al.  High temporal and spatial quality petawatt-class Ti:sapphire chirped-pulse amplification laser system. , 2010, Optics letters.

[9]  T. Jeong,et al.  High-quality, 1-kHz, 20-fs, 0.15-TW Ti:sapphire laser with a single-stage amplifier , 2012 .

[10]  Michael D. Perry,et al.  Electron, photon, and ion beams from the relativistic interaction of Petawatt laser pulses with solid targets , 2000 .

[11]  Eric Esarey,et al.  Physics of laser-driven plasma-based electron accelerators , 2009 .

[12]  Scott C. Wilks Simulations of ultraintense laser-plasma interactions , 1993 .

[13]  D R Williams,et al.  Effect of rotation and translation on the expected benefit of an ideal method to correct the eye's higher-order aberrations. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[14]  G. Mourou,et al.  Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. , 2008, Optics express.

[15]  Rose,et al.  Plasma ion emission from high intensity picosecond laser pulse interactions with solid targets. , 1994, Physical review letters.

[16]  K. Djerroud,et al.  A coherent optical link through the turbulent atmosphere , 2010, EFTF-2010 24th European Frequency and Time Forum.

[17]  Tae Jun Yu,et al.  Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. , 2013, Physical review letters.

[18]  Toshiki Tajima,et al.  Light intensification towards the Schwinger limit. , 2003, Physical review letters.

[19]  Fulvio Cornolti,et al.  Laser acceleration of ion bunches at the front surface of overdense plasmas. , 2005, Physical review letters.

[20]  Antonetti,et al.  Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[21]  H. Daido,et al.  Review of laser-driven ion sources and their applications , 2012, Reports on progress in physics. Physical Society.

[22]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[23]  P. LiKamWa,et al.  Generation of 150-fs tunable pulses in Cr:LiSrAlF6. , 1992, Optics letters.

[24]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[25]  Dyson,et al.  Efficient extreme UV harmonics generated from picosecond laser pulse interactions with solid targets. , 1996, Physical review letters.

[26]  Matsumoto,et al.  Beat-wave excitation of plasma wave and observation of accelerated electrons. , 1992, Physical review letters.

[27]  Tae Jun Yu,et al.  Characteristics of a Ni-like silver x-ray laser pumped by a single profiled laser pulse , 2008 .

[28]  S. Ter-Avetisyan,et al.  Characterisation and Manipulation of Proton Beams Accelerated by Ultra-Short and High-Contrast Laser Pulses , 2010 .

[29]  Klaus Ertel,et al.  ASE suppression in a high energy Titanium sapphire amplifier. , 2008, Optics express.

[30]  A Nikroo,et al.  Comparison of laser ion acceleration from the front and rear surfaces of thin foils. , 2005, Physical review letters.

[31]  Eric Esarey,et al.  Laser-driven plasma-wave electron accelerators , 2009 .

[32]  Audrius Dubietis,et al.  Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal , 1992 .

[33]  D. Price,et al.  Suppression of parasitic lasing in large-aperture Ti:sapphire laser amplifiers. , 1999, Optics letters.

[34]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[35]  W. Lamb Theory of an optical maser , 1964 .

[36]  F. Quéré,et al.  Coherent wake emission of high-order harmonics from overdense plasmas. , 2006, Physical review letters.

[37]  J Primot,et al.  Extended hartmann test based on the pseudoguiding property of a hartmann mask completed by a phase chessboard. , 2000, Applied optics.

[38]  Tae Jun Yu,et al.  Demonstration of a saturated Ni-like Ag x-ray laser pumped by a single profiled laser pulse from a 10-Hz Ti:sapphire laser system , 2008 .

[39]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[40]  Antoine Rousse,et al.  Production of a keV x-ray beam from synchrotron radiation in relativistic laser-plasma interaction. , 2004, Physical review letters.

[41]  Ferenc Krausz,et al.  Laser-driven soft-X-ray undulator source , 2009 .

[42]  F. Krausz,et al.  Femtosecond passive mode locking of a solid-state laser by a dispersively balanced nonlinear interferometer , 1991 .

[43]  O Willi,et al.  Multi-MeV proton source investigations in ultraintense laser-foil interactions. , 2004, Physical review letters.

[44]  Olivier Albert,et al.  10(-10) temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation. , 2005, Optics letters.

[45]  J. W. Yoon,et al.  Improvement of contrast ratio in saturated OPCPA system by using pump pulse shaping and time delay control , 2012 .

[46]  D Kiefer,et al.  Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. , 2009, Physical review letters.

[47]  Erich P. Ippen,et al.  Passive mode locking of the cw dye laser , 1972 .

[48]  F. McClung,et al.  Giant Optical Pulsations from Ruby , 1962 .

[49]  I. Walmsley,et al.  Spectral phase interferometry for direct electric-field reconstruction of ultrashort optical pulses. , 1998, Optics letters.

[50]  Szymon Suckewer,et al.  A new method for generating ultraintense and ultrashort laser pulses , 2007 .

[51]  Peter A. Norreys,et al.  High harmonic generation in the relativistic limit , 2006 .

[52]  Shigeo Kawata,et al.  Short pulse laser interaction with micro-structured targets: simulations of laser absorption and ion acceleration , 2011 .

[53]  Zhi‐zhan Xu,et al.  All-optical cascaded laser wakefield accelerator using ionization-induced injection. , 2011, Physical review letters.

[54]  Tae Jun Yu,et al.  0.1 Hz 1.0 PW Ti:sapphire laser. , 2010, Optics letters.

[55]  Tae Jun Yu,et al.  Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses. , 2013, Physical review letters.

[56]  F. Hartemann,et al.  Isotope-specific detection of low-density materials with laser-based monoenergetic gamma-rays. , 2010, Optics letters.

[57]  Pierre Tournois,et al.  Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems , 1997 .

[58]  Vladislav Ginzburg,et al.  Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals , 2007 .

[59]  S. V. Bulanov,et al.  Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma , 1992 .

[60]  K Yamakawa,et al.  0.85-PW, 33-fs Ti:sapphire laser. , 2003, Optics letters.

[61]  Tae Jun Yu,et al.  Stable generation of GeV-class electron beams from self-guided laser–plasma channels , 2008 .

[62]  P. Moulton Spectroscopic and laser characteristics of Ti:Al2O3 , 1986 .

[63]  D W Litzenberg,et al.  Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[64]  J. Fuchs,et al.  Fast focusing of short-pulse lasers by innovative plasma optics toward extreme intensity. , 2010, Optics letters.

[65]  Do-Kyeong Ko,et al.  Generalized ray-transfer matrix for an optical element having an arbitrary wavefront aberration. , 2005, Optics letters.

[66]  Zulfikar Najmudin,et al.  Observation of Laser Wakefield Acceleration of Electrons , 1998 .

[67]  Gerard Mourou,et al.  Generation and characterization of the highest laser intensities (1022 W/cm2) , 2004, CLEO 2004.

[68]  P. Nickles,et al.  On the way to 100 TW–10 Hz titanium–sapphire laser facilities , 2001 .

[69]  S. Lee,et al.  Analysis of Thermal Aberrations in the Power Amplifiers of a10-Hz 100-TW Ti:sapphire Laser , 2009 .

[70]  Ferenc Krausz,et al.  Route to intense single attosecond pulses , 2006 .

[71]  Gerard Jamelot,et al.  Design and demonstration of a high-energy booster amplifier for a high-repetition rate petawatt class laser system. , 2007, Optics letters.

[72]  Zhiyi Wei,et al.  High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier. , 2011, Optics letters.

[73]  Brian James Albright,et al.  Monoenergetic and GeV ion acceleration from the laser breakout afterburner using ultrathin targets , 2007 .

[74]  Francesco Pegoraro,et al.  Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma , 1994 .

[75]  K. Witte,et al.  MeV ion jets from short-pulse-laser interaction with thin foils. , 2002, Physical review letters.

[76]  Richard L. Fork,et al.  LOCKING OF He–Ne LASER MODES INDUCED BY SYNCHRONOUS INTRACAVITY MODULATION , 1964 .

[77]  H T Powell,et al.  Petawatt laser pulses. , 1999, Optics letters.

[78]  Yuxin Leng,et al.  Parasitic lasing suppression in high gain femtosecond petawatt Ti:sapphire amplifier. , 2007, Optics express.

[79]  Gerard Mourou,et al.  Compression of amplified chirped optical pulses , 1985 .

[80]  Nakajima,et al.  Observation of ultrahigh gradient electron acceleration by a self-modulated intense short laser pulse. , 1995, Physical review letters.

[81]  J. G. Kim,et al.  The Temperature Dependence of the Quantum Transition Properties of the Quasi-two-dimensional System in Quasi-two-dimensional Semiconductors , 2010 .

[82]  Do-Kyeong Ko,et al.  Deformation of the Focal Spot of an Ultrashort High-Power Laser Pulse due to Chromatic Aberration by a Beam Expander , 2008 .

[83]  Tae Jun Yu,et al.  Relativistic frequency upshift to the extreme ultraviolet regime using self-induced oscillatory flying mirrors , 2012, Nature Communications.

[84]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[85]  S. V. Bulanov,et al.  Lorentz-Abraham-Dirac versus Landau-Lifshitz radiation friction force in the ultrarelativistic electron interaction with electromagnetic wave (exact solutions). , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[86]  N. Hafz,et al.  Wavefront Correction and Customization of Focal Spot of 100 TW Ti:Sapphire Laser System , 2007 .

[87]  Anatoly Maksimchuk,et al.  Experimental observation of relativistic nonlinear Thomson scattering , 1998, Nature.

[88]  Erich P. Ippen,et al.  Subpicosecond kilowatt pulses from a mode‐locked cw dye laser , 1974 .

[89]  L. DiMauro,et al.  Aberration-free stretcher design for ultrashort-pulse amplification. , 1995, Optics letters.

[90]  J G Fujimoto,et al.  Generation of 20-fs pulses by a prismless Cr(4+):YAG laser. , 2002, Optics letters.

[91]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[92]  S. Suckewer Ultra-intense lasers: Beyond a petawatt , 2011 .

[93]  Ellen Lee A Piggy-Back Approach to Archaeological Resource Inventory , 1990 .

[94]  Boosted high-harmonics pulse from a double-sided relativistic mirror. , 2009, Physical review letters.

[95]  Paul Gibbon,et al.  High-order harmonics from laser-irradiated plasma surfaces , 2009 .

[96]  M Borghesi,et al.  Highly efficient relativistic-ion generation in the laser-piston regime. , 2004, Physical review letters.

[97]  Y. Iwashita,et al.  Simultaneous Proton and X-ray Imaging with Femtosecond Intense Laser Driven Plasma Source , 2007 .

[98]  N. H. Burnett,et al.  Harmonic generation in CO2 laser target interaction , 1977 .

[99]  J. W. Yoon,et al.  Broadband, high gain two-stage optical parametric chirped pulse amplifier using BBO crystals for a femtosecond high-power Ti:sapphire laser system , 2012 .

[100]  Tae Jun Yu,et al.  Spatio-temporal characterization of double plasma mirror for ultrahigh contrast and stable laser pulse , 2011 .

[101]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[102]  S. V. Bulanov,et al.  Efficient production of a collimated MeV proton beam from a polyimide target driven by an intense femtosecond laser pulse , 2008 .

[103]  Z. Sheng,et al.  Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser. , 2010, Physical review letters.

[104]  J. Meyer-ter-Vehn,et al.  Laser wake field acceleration: the highly non-linear broken-wave regime , 2002 .

[105]  O. Chalus,et al.  Suppression of parasitic lasing in high energy, high repetition rate Ti:sapphire laser amplifiers. , 2012, Optics letters.

[106]  A. Giulietti,et al.  Laser-Plasma Acceleration with FLAME and ILIL Ultraintense Lasers , 2013 .

[107]  H. Daido,et al.  Simultaneous generation of ions and high-order harmonics from thin conjugated polymer foil irradiated with ultrahigh contrast laser , 2011 .

[108]  Gibbon,et al.  Harmonic generation by femtosecond laser-solid interaction: A coherent "water-window" light source? , 1996, Physical review letters.

[109]  T. Engers,et al.  Second harmonic generation in plasmas produced by intense femtosecond laser pulses , 1992 .

[110]  J. W. Yoon,et al.  Generation of high-contrast, 30 fs, 1.5 PW laser pulses , 2012, 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEOPR).

[111]  B. Albright,et al.  Dynamics of relativistic transparency and optical shuttering in expanding overdense plasmas , 2012, Nature Physics.

[112]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .

[113]  Peter A. Norreys,et al.  Simulations of efficient Raman amplification into the multipetawatt regime , 2010 .

[114]  K.-U. Amthor,et al.  Laser-plasma acceleration of quasi-monoenergetic protons from microstructured targets , 2006, Nature.

[115]  H. T. Kim,et al.  Laser-driven proton acceleration enhancement by nanostructured foils. , 2012, Physical review letters.