EVOLUTIONARY SHAPE OPTIMIZATION IN CFD WITH INDUSTRIAL APPLICATIONS

The solution of two optimal shape design problems related to industrial CFD using genetic algorithms are considered. The first one is a single objective optimization problem, where the geometry of a flow divider of a paper machine headbox is designed subject to prescribed goals and restrictions. The second problem is a two-dimensional air- foil design problem, where the objectives are to minimize the drag and the electromagnetic backscatter while the lift is larger than a given value. The flow and backscatter are mod- eled by the thin-layer Navier-Stokes equations and the time-harmonic Maxwell equations, respectively. Hence, this is a multiobjective and multidisciplinary shape optimization prob- lem. Numerical experiments demonstrate capability of the genetic algorithms to solve these two industrial optimal shape design problems.

[1]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[2]  Raino A. E. Mäkinen,et al.  Optimal shape design for Helmholtz/potential flow problem using fictitious domain method , 1994 .

[3]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[4]  J. Periaux,et al.  Parallel Genetic Solution for Multiobjective MDO , 1996, Parallel CFD.

[5]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[6]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[7]  Alfred Dipl Ing Dr Bubik,et al.  The headbox of a paper machine , 1973 .

[8]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[9]  Andrzej Osyczka,et al.  Multicriteria Design Optimization: Procedures and Applications , 1990 .

[10]  Werner Haase,et al.  Determination of length scales in algebraic turbulence models for Navier-Stokes methods , 1989 .

[11]  Raino A. E. Mäkinen,et al.  Optimal design of paper machine headboxes , 2000 .

[12]  Antony Jameson,et al.  Aerodynamic design via control theory , 1988, J. Sci. Comput..

[13]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[14]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[15]  Yuri A. Kuznetsov,et al.  Fictitious Domain Methods for the Numerical Solution of Two-Dimensional Scattering Problems , 1998 .

[16]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[17]  J. Périaux,et al.  Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms , 1999 .

[18]  Michael de la Maza,et al.  Book review: Genetic Algorithms + Data Structures = Evolution Programs by Zbigniew Michalewicz (Springer-Verlag, 1992) , 1993 .

[19]  Juhani Koski,et al.  Multicriteria Design Optimization , 1990 .