Superconvergence analysis of nonconforming FEM for nonlinear time-dependent thermistor problem

Abstract In this paper, we study the superconvergence analysis of nonlinear time-dependent thermistor problem with the well-known nonconforming element, i.e., the extension of the rotated bilinear element (denoted E Q 1 r o t ), for the semi-discrete and a linearized backward Euler fully-discrete schemes. The superclose and superconvergent estimates about the related variables in broken H1-norm are derived with the help of the rigorous analysis together with the special properties of this element, mean value technique and interpolated post-processing approach. Finally, a numerical experiment is carried out to confirm the theoretical analysis.

[1]  Dongyang Shi,et al.  Unconditional Superconvergence Analysis for Nonlinear Parabolic Equation with EQ1rot\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \beg , 2016, Journal of Scientific Computing.

[2]  Stig Larsson,et al.  Linearly Implicit Finite Element Methods for the Time-Dependent Joule Heating Problem , 2005 .

[3]  Uwe Risch,et al.  Superconvergence of a nonconforming low order finite element , 2005 .

[4]  Dongyang Shi,et al.  Anisotropic crouzeix-raviart type nonconforming finite element methods to variational inequality problem with displacement obstacle , 2015 .

[5]  R. Rannacher,et al.  Simple nonconforming quadrilateral Stokes element , 1992 .

[6]  Guangwei Yuan,et al.  Regularity of solutions of the thermistor problem , 1994 .

[7]  Zhao Weidong,et al.  Finite difference method and its convergent error analyses for thermistor problem , 1999 .

[8]  Fenling Wang,et al.  EQ1rot nonconforming finite element method for nonlinear dual phase lagging heat conduction equations , 2013 .

[9]  Shipeng Mao,et al.  CONVERGENCE AND SUPERCONVERGENCE OF A NONCONFORMING FINITE ELEMENT ON ANISOTROPIC MESHES , 2007 .

[10]  Danping Yang,et al.  Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations , 2008 .

[11]  Walter Allegretto,et al.  Existence and long time behaviour of solutions to obstacle thermistor equations , 2002 .

[12]  W. Allegretto,et al.  Existence of solutions for the time-dependent thermistor equations , 1992 .

[13]  Dongwoo Sheen,et al.  P1-Nonconforming Quadrilateral Finite Element Methods for Second-Order Elliptic Problems , 2003, SIAM J. Numer. Anal..

[14]  Qun Lin,et al.  New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements , 2008, Math. Comput..

[15]  Chao-Jiang Xu,et al.  EQ1rot nonconforming finite element approximation to Signorini problem , 2013 .

[16]  Wang,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT METHOD FOR APPROXIMATING A CLASS OF NONLINEAR SOBOLEV EQUATIONS , 2009 .

[17]  Xiangsheng Xu,et al.  Existence for the thermoelastic thermistor problem , 2006 .

[18]  Huadong Gao,et al.  Unconditional Optimal Error Estimates of BDF–Galerkin FEMs for Nonlinear Thermistor Equations , 2016, J. Sci. Comput..

[19]  Zhong-Ci Shi,et al.  A new superconvergence property of Wilson nonconforming finite element , 1997 .

[20]  D. R. Westbrook,et al.  Numerical solutions of the thermistor equations , 1997 .

[21]  Dongyang Shi,et al.  A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes , 2007 .

[22]  Charles M. Elliott,et al.  A finite element model for the time-dependent Joule heating problem , 1995 .

[23]  Hong Wang,et al.  Uniform optimal-order estimates for finite element methods for advection-diffusion equations , 2009, J. Syst. Sci. Complex..

[24]  Guangwei Yuan,et al.  Existence and uniqueness of the C a solution for the thermistor problem with mixed boundary value , 1994 .

[25]  Yadong Zhang,et al.  Superconvergence of an H1-Galerkin nonconforming mixed finite element method for a parabolic equation , 2013, Comput. Math. Appl..

[26]  Huadong Gao,et al.  Optimal Error Analysis of Galerkin FEMs for Nonlinear Joule Heating Equations , 2013, Journal of Scientific Computing.

[27]  Shao-chunChen,et al.  AN ANISOTROPIC NONCONFORMING FINITE ELEMENT WITH SOME SUPERCONVERGENCE RESULTS , 2005 .

[28]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[29]  Dongyang Shi,et al.  Superconvergence analysis of finite element method for time-fractional Thermistor problem , 2018, Appl. Math. Comput..

[30]  Shipeng Mao,et al.  A locking-free anisotropic nonconforming finite element for planar linear elasticity problem , 2007 .

[31]  T. F. Russell,et al.  Time Stepping Along Characteristics with Incomplete Iteration for a Galerkin Approximation of Miscible Displacement in Porous Media , 1985 .

[32]  Luoping Chen,et al.  Two‐Grid method for nonlinear parabolic equations by expanded mixed finite element methods , 2013 .

[33]  Chao Xu,et al.  Anisotropic Nonconforming $${ EQ}_1^{rot}$$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems , 2013, J. Sci. Comput..

[34]  Weiwei Sun,et al.  Unconditionally Optimal Error Estimates of a Crank-Nicolson Galerkin Method for the Nonlinear Thermistor Equations , 2012, SIAM J. Numer. Anal..

[35]  Dongwoo Sheen,et al.  A Locking-Free Nonconforming Finite Element Method for Planar Linear Elasticity , 2003, Adv. Comput. Math..

[36]  Dongyang Shi,et al.  Superconvergence analysis for nonlinear parabolic equation with $$EQ_1^\mathrm{{rot}}$$EQ1rot nonconforming finite element , 2018 .

[37]  Giovanni Cimatti,et al.  Existence of weak solutions for the nonstationary problem of the Joule heating of a conductor , 1992 .

[38]  Q. Lin,et al.  Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation , 2005 .

[39]  Bin Zheng,et al.  Error analysis of finite element method for Poisson-Nernst-Planck equations , 2016, J. Comput. Appl. Math..

[40]  Yinnian He,et al.  P1-Nonconforming Quadrilateral Finite Volume Methods for the Semilinear Elliptic Equations , 2012, J. Sci. Comput..

[41]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.