Public-key quantum digital signature scheme with one-time pad private-key

A quantum digital signature scheme is firstly proposed based on public-key quantum cryptosystem. In the scheme, the verification public-key is derived from the signer’s identity information (such as e-mail) on the foundation of identity-based encryption, and the signature private-key is generated by one-time pad (OTP) protocol. The public-key and private-key pair belongs to classical bits, but the signature cipher belongs to quantum qubits. After the signer announces the public-key and generates the final quantum signature, each verifier can verify publicly whether the signature is valid or not with the public-key and quantum digital digest. Analysis results show that the proposed scheme satisfies non-repudiation and unforgeability. Information-theoretic security of the scheme is ensured by quantum indistinguishability mechanics and OTP protocol. Based on the public-key cryptosystem, the proposed scheme is easier to be realized compared with other quantum signature schemes under current technical conditions.

[1]  P. J. Clarke,et al.  Realization of quantum digital signatures without the requirement of quantum memory. , 2013, Physical review letters.

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Introduction to the Tenth Anniversary Edition , 2010 .

[3]  Dengguo Feng,et al.  An Arbitrated Quantum Message Signature Scheme , 2004, CIS.

[4]  Matthew K. Franklin,et al.  Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.

[5]  Chong Xiang,et al.  Quantum public-key encryption schemes based on conjugate coding , 2020, Quantum Inf. Process..

[6]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[7]  Hwayean Lee,et al.  Arbitrated quantum signature scheme with message recovery , 2004 .

[8]  Li Yang,et al.  Quantum Public-Key Encryption with Information Theoretic Security , 2010, 1006.0354.

[9]  Leslie Lamport,et al.  Constructing Digital Signatures from a One Way Function , 2016 .

[10]  R. Amiri,et al.  Secure quantum signatures using insecure quantum channels , 2015, 1507.02975.

[11]  Guihua Zeng,et al.  Novel qubit block encryption algorithm with hybrid keys , 2007 .

[12]  Guihua Zeng,et al.  Arbitrated quantum-signature scheme , 2001, quant-ph/0109007.

[13]  V. Roychowdhury,et al.  Optimal encryption of quantum bits , 2000, quant-ph/0003059.

[14]  Weizhong Zhao,et al.  On the security of arbitrated quantum signature schemes , 2012, 1205.3265.

[15]  Erika Andersson,et al.  Quantum digital signatures without quantum memory. , 2013, Physical review letters.

[16]  Keisuke Tanaka,et al.  Quantum Public-Key Cryptosystems , 2000, CRYPTO.

[17]  Tzonelih Hwang,et al.  Arbitrated quantum signature of classical messages without using authenticated classical channels , 2014, Quantum Inf. Process..

[18]  Li Yang,et al.  Quantum public-key encryption protocols with information-theoretic security , 2012, Photonics Europe.

[19]  R. Cleve,et al.  Quantum fingerprinting. , 2001, Physical review letters.

[20]  G. M. Nikolopoulos,et al.  Symmetries and security of a quantum-public-key encryption based on single-qubit rotations , 2012, 1202.3921.

[21]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[22]  Yang Li,et al.  Quantum probabilistic encryption scheme based on conjugate coding , 2012, China Communications.

[23]  Tzonelih Hwang,et al.  On “Arbitrated quantum signature of classical messages against collective amplitude damping noise” , 2011 .

[24]  G. M. Nikolopoulos,et al.  Applications of single-qubit rotations in quantum public-key cryptography , 2008, 0801.2840.

[25]  Xiaoyu Li,et al.  Quantum Public-Key Cryptosystem Based on Super Dense Coding Technology , 2013, J. Comput..

[26]  Dengguo Feng,et al.  Quantum digital signature based on quantum one-way functions , 2005, The 7th International Conference on Advanced Communication Technology, 2005, ICACT 2005..

[27]  Yu-Guang Yang,et al.  Erratum: Arbitrated quantum signature of classical messages against collective amplitude damping noise (Opt. Commun. 283 (2010) 3198–3201) , 2010 .

[28]  Min Liang,et al.  Quantum public-key cryptosystems based on induced trapdoor one-way transformations , 2010, 1012.5249.