Size Optimization of Iron Oxide@Noble Metal Core–Shell Nanohybrids for Photothermal Applications

The optical properties of several iron oxide@noble metal core–shell nanohybrids (NHs) have been systematically studied by means of electrodynamics simulations applying Mie theory for coated spheres. Focus has been made in analyzing the dependence of the absorption cross section Cabs on the composition as well as on the variables that determine the NHs size, that is, the core radius, R, and the shell thickness, S. The absorption spectra are characterized by an intense peak attributed to a plasmon resonance mode for which the spectral position can be finely tuned in the Vis–NIR range according to the NH size and composition. The absorption cross-section peak intensity, Cabs,max, a key quantity regarding photothermal applications, also presents a strong dependence on the NH size and composition. In general, it is found that α-Fe2O3@Au and α-Fe2O3@Ag lead to larger Cabs,max values than Fe3O4@Au and Fe3O4@Ag core–shell NHs, which is attributed to the lower imaginary refractive index of α-Fe2O3 in comparison to...

[1]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[2]  Yuji Horie,et al.  Au-ultrathin functionalized core–shell (Fe3O4@Au) monodispersed nanocubes for a combination of magnetic/plasmonic photothermal cancer cell killing , 2013 .

[3]  R. Stafford,et al.  Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Caroline S. Gorham,et al.  Protein Thermal Conductivity Measured in the Solid State Reveals Anharmonic Interactions of Vibrations in a Fractal Structure. , 2014, The journal of physical chemistry letters.

[5]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[6]  Janos Vörös,et al.  The density and refractive index of adsorbing protein layers. , 2004, Biophysical journal.

[7]  Wei Zhang,et al.  Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances , 2006, Nanoscale Research Letters.

[8]  D. Astruc,et al.  Fast-growing field of magnetically recyclable nanocatalysts. , 2014, Chemical reviews.

[9]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[10]  Chun Li,et al.  Bifunctional Gold Nanoshells with a Superparamagnetic Iron Oxide-Silica Core Suitable for Both MR Imaging and Photothermal Therapy. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[11]  P. Jain,et al.  Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. , 2007, Nano letters.

[12]  Rong Huang,et al.  Facile methods for synthesis of core–shell structured and heterostructured Fe3O4@Au nanocomposites , 2012 .

[13]  Benxia Li,et al.  Metal/Semiconductor Hybrid Nanostructures for Plasmon‐Enhanced Applications , 2014, Advanced materials.

[14]  W. Porod,et al.  Ultrasmall α-Fe2O3 Superparamagnetic Nanoparticles with High Magnetization Prepared by Template-Assisted Combustion Process , 2014 .

[15]  Alexander Moroz,et al.  Optical properties of spherical and oblate spheroidal gold shell colloids , 2008 .

[16]  Jin Luo,et al.  Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[17]  S. Tu,et al.  Fabrication of shape-controlled hematite particles and growth of gold nanoshells , 2009 .

[18]  Wei Zhang,et al.  Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. , 2006, Nano letters.

[19]  Poulomi Roy,et al.  Nanostructured anode materials for lithium ion batteries , 2015 .

[20]  A. Moroz Electron Mean Free Path in a Spherical Shell Geometry , 2008 .

[21]  Huanjun Chen,et al.  Gold nanorods and their plasmonic properties. , 2013, Chemical Society reviews.

[22]  Fei Le,et al.  Nanorice: a hybrid plasmonic nanostructure. , 2006, Nano letters.

[23]  Junfa Zhu,et al.  Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability. , 2015, Nanoscale.

[24]  S. Paria,et al.  Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. , 2012, Chemical reviews.

[25]  Joseph B. Herzog,et al.  Thermoplasmonics: quantifying plasmonic heating in single nanowires. , 2014, Nano letters.

[26]  Xiaohan Liu,et al.  Facile Synthesis of Monodisperse Superparamagnetic Fe3O4 Core@hybrid@Au Shell Nanocomposite for Bimodal Imaging and Photothermal Therapy , 2011, Advanced materials.

[27]  P. Nordlander,et al.  Plasmon hybridization in spherical nanoparticles. , 2004, The Journal of chemical physics.

[28]  M. Meunier,et al.  Plasmonics for pulsed-laser cell nanosurgery: Fundamentals and applications , 2013 .

[29]  F. Starsich,et al.  Photothermal Killing of Cancer Cells by the Controlled Plasmonic Coupling of Silica‐Coated Au/Fe2O3 Nanoaggregates , 2014 .

[30]  Herman Terryn,et al.  Optical properties of thin iron oxide films on steel , 2006 .

[31]  C. Baldwin,et al.  Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation. , 2014, The journal of physical chemistry letters.

[32]  Li Li,et al.  Silicon/hematite core/shell nanowire array decorated with gold nanoparticles for unbiased solar water oxidation. , 2014, Nano letters.

[33]  Romain Quidant,et al.  Nanoplasmonics for chemistry. , 2014, Chemical Society reviews.

[34]  Qiao Zhang,et al.  Recent advances in noble metal based composite nanocatalysts: colloidal synthesis, properties, and catalytic applications. , 2015, Nanoscale.

[35]  Hong‐Bo Sun,et al.  Multifunctional superparamagnetic iron oxide nanoparticles: design, synthesis and biomedical photonic applications. , 2013, Nanoscale.

[36]  A. Pinchuk,et al.  Size-Dependent Photothermal Conversion Efficiencies of Plasmonically Heated Gold Nanoparticles , 2013 .

[37]  Ward Brullot,et al.  Magnetic-plasmonic nanoparticles for the life sciences: calculated optical properties of hybrid structures. , 2012, Nanomedicine : nanotechnology, biology, and medicine.

[38]  M. A. Malik,et al.  Routes to Nanostructured Inorganic Materials with Potential for Solar Energy Applications , 2013 .

[39]  Probal Banerjee,et al.  Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles. , 2015, Nanoscale.

[40]  E. Coronado,et al.  Resonance conditions for multipole plasmon excitations in noble metal nanorods , 2007 .

[41]  Yadong Li,et al.  Bifunctional Au-Fe3O4 nanoparticles for protein separation. , 2007, ACS nano.

[42]  Romain Quidant,et al.  Thermoplasmonics modeling: A Green's function approach , 2010 .

[43]  Xiaohua Huang,et al.  Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles. , 2014, The journal of physical chemistry. B.

[44]  Diego Stéfani T. Martinez,et al.  Silver nanoparticle protein corona and toxicity: a mini-review , 2015, Journal of Nanobiotechnology.

[45]  Yong Hu,et al.  Hyaluronic acid-modified Fe3O4@Au core/shell nanostars for multimodal imaging and photothermal therapy of tumors. , 2015, Biomaterials.

[46]  Michael Grätzel,et al.  Influence of plasmonic Au nanoparticles on the photoactivity of Fe₂O₃ electrodes for water splitting. , 2011, Nano letters.

[47]  George C. Schatz,et al.  Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach , 2003 .

[48]  Qiang Li,et al.  Photothermal Enhancement in Core-Shell Structured Plasmonic Nanoparticles , 2014, Plasmonics.

[49]  Romain Quidant,et al.  Heat generation in plasmonic nanostructures: Influence of morphology , 2009 .

[50]  Jin Luo,et al.  Monodispersed core-shell Fe3O4@Au nanoparticles. , 2005, The journal of physical chemistry. B.

[51]  Shaojun Dong,et al.  Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering , 2009 .

[52]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[53]  O. Wolfbeis An overview of nanoparticles commonly used in fluorescent bioimaging. , 2015, Chemical Society reviews.

[54]  Na Li,et al.  State of the art in gold nanoparticle synthesis , 2013 .

[55]  Siu Kai Kong,et al.  Folate-conjugated Fe3O4@SiO2@gold nanorods@mesoporous SiO2 hybrid nanomaterial: a theranostic agent for magnetic resonance imaging and photothermal therapy. , 2013, Journal of materials chemistry. B.

[56]  Yen Wei,et al.  Core–shell structural iron oxide hybrid nanoparticles: from controlled synthesis to biomedical applications , 2011 .

[57]  Naomi J Halas,et al.  Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[58]  Xiangfeng Duan,et al.  Progress, challenge and perspective of heterogeneous photocatalysts. , 2013, Chemical Society reviews.

[59]  Yuanyuan Luo,et al.  Facile one-step synthesis of plasmonic/magnetic core/shell nanostructures and their multifunctionality , 2012 .

[60]  E. Matijević,et al.  Color effects of uniform colloidal particles of different morphologies packed into films. , 1994, Applied optics.

[61]  Liberato Manna,et al.  Synthesis, properties and perspectives of hybrid nanocrystal structures. , 2006, Chemical Society reviews.

[62]  A. Mlayah,et al.  Hybrid Au–Fe3O4 Nanoparticles: Plasmonic, Surface Enhanced Raman Scattering, and Phase Transition Properties , 2013 .

[63]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[64]  Tymish Y. Ohulchanskyy,et al.  A general approach to binary and ternary hybrid nanocrystals. , 2006, Nano letters.

[65]  T. Sritharan,et al.  Investigating the multiple roles of polyvinylpyrrolidone for a general methodology of oxide encapsulation. , 2013, Journal of the American Chemical Society.

[66]  Naomi J Halas,et al.  Theranostic nanoshells: from probe design to imaging and treatment of cancer. , 2011, Accounts of chemical research.