Itô SDE-based Generator for a Class of Non-Gaussian Vector-valued Random Fields in Uncertainty Quantification

This paper is concerned with the derivation of a generic sampling technique for a class of non-Gaussian vector-valued random fields. Such an issue typically arises in uncertainty quantification for complex systems, where the input coefficients associated with the elliptic operators must be identified by solving statistical inverse problems. Specifically, we consider the case of non-Gaussian random fields with values in some arbitrary bounded or semibounded subsets of $\mathbb{R}^n$. The approach involves two main features. The first is the construction of a family of random fields converging, at a user-controlled rate, toward the target random field. Each of these auxialiary random fields can be subsequently simulated by solving a family of Ito stochastic differential equations. The second ingredient is the definition of an adaptive discretization algorithm. The latter allows refining the integration step on-the-fly and prevents the scheme from diverging. The proposed strategy is finally exemplified on th...

[1]  E. Hairer,et al.  Geometric numerical integration illustrated by the Störmer–Verlet method , 2003, Acta Numerica.

[2]  Mircea Grigoriu,et al.  A method for the efficient construction and sampling of vector-valued translation random fields , 2011 .

[3]  Christian Soize A nonparametric model of random uncertainties for reduced matrix models in structural dynamics , 2000 .

[4]  G. PERRIN,et al.  Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations , 2012, SIAM J. Sci. Comput..

[5]  Christian Soize,et al.  Non-Gaussian simulation using Hermite polynomial expansion: convergences and algorithms , 2002 .

[6]  Christian Soize,et al.  On the Statistical Dependence for the Components of Random Elasticity Tensors Exhibiting Material Symmetry Properties , 2012, Journal of Elasticity.

[7]  Christian Soize,et al.  Generalized stochastic approach for constitutive equation in linear elasticity: a random matrix model , 2011, International Journal for Numerical Methods in Engineering.

[8]  Klaus Ritter,et al.  The Optimal Discretization of Stochastic Differential Equations , 2001, J. Complex..

[9]  B. Leimkuhler,et al.  Rational Construction of Stochastic Numerical Methods for Molecular Sampling , 2012, 1203.5428.

[10]  Michael L. Stein,et al.  Fast and Exact Simulation of Fractional Brownian Surfaces , 2002 .

[11]  Christian Soize,et al.  The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solutions , 1994, Series on Advances in Mathematics for Applied Sciences.

[12]  Christian Soize,et al.  A probabilistic model for bounded elasticity tensor random fields with application to polycrystalline microstructures , 2011 .

[13]  A. T. A. Wood,et al.  Simulation of stationary Gaussian vector fields , 1999, Stat. Comput..

[14]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[15]  A. Gelman,et al.  Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .

[16]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[17]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[18]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[19]  Christian Soize,et al.  Non‐Gaussian positive‐definite matrix‐valued random fields with constrained eigenvalues: Application to random elasticity tensors with uncertain material symmetries , 2011 .

[20]  Ernst Hairer,et al.  Explicit, Time Reversible, Adaptive Step Size Control , 2005, SIAM J. Sci. Comput..

[21]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[22]  Christian Soize Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators , 2006 .

[23]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[24]  T. Gneiting,et al.  Fast and Exact Simulation of Large Gaussian Lattice Systems in ℝ2: Exploring the Limits , 2006 .

[25]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[26]  Paolo Bocchini,et al.  A simple and efficient methodology to approximate a general non-Gaussian stationary stochastic process by a translation process , 2011 .

[27]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[28]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[29]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[30]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[31]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[32]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[33]  Christian Soize,et al.  Mathematics of random phenomena , 1986 .

[34]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[35]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[36]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[37]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[38]  Christian Soize,et al.  A computational inverse method for identification of non-Gaussian random fields using the Bayesian approach in very high dimension , 2011, Computer Methods in Applied Mechanics and Engineering.

[39]  V. Lemaire An adaptive scheme for the approximation of dissipative systems , 2005, math/0502317.

[40]  Christian Soize,et al.  Construction of probability distributions in high dimension using the maximum entropy principle: Applications to stochastic processes, random fields and random matrices , 2008 .

[41]  T. Müller-Gronbach The optimal uniform approximation of systems of stochastic differential equations , 2002 .

[42]  Ying Sun,et al.  A Valid Matérn Class of Cross-Covariance Functions for Multivariate Random Fields With Any Number of Components , 2012 .

[43]  O. L. Maître,et al.  Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics , 2010 .

[44]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[45]  Paolo Bocchini,et al.  Critical review and latest developments of a class of simulation algorithms for strongly non-Gaussian random fields , 2008 .

[46]  M. Grigoriu Existence and construction of translation models for stationary non-Gaussian processes , 2009 .

[47]  N. G.,et al.  Quasi-symplectic methods for Langevin-type equations , 2003 .

[48]  G. Pagès,et al.  RECURSIVE COMPUTATION OF THE INVARIANT DISTRIBUTION OF A DIFFUSION: THE CASE OF A WEAKLY MEAN REVERTING DRIFT , 2003 .

[49]  Klaus Ritter,et al.  Optimal approximation of stochastic differential equations by adaptive step-size control , 2000, Math. Comput..

[50]  Jonathan C. Mattingly,et al.  An adaptive Euler–Maruyama scheme for SDEs: convergence and stability , 2006, math/0601029.