Thermomechanical properties and fracture mechanisms of calcium hexaluminate
暂无分享,去创建一个
[1] D. Gourier,et al. Magnetoplumbite-Related Oxides , 2010 .
[2] J. Chevalier,et al. Microstructure development in calcium hexaluminate , 2001 .
[3] I. Low,et al. Characteristics of a layered and graded alumina/calcium-hexaluminate composite , 1999 .
[4] L. An,et al. High‐Strength Alumina/Alumina:Calcium‐Hexaluminate Layer Composites , 1998 .
[5] M. Saâdaoui,et al. Crack growth resistance under thermal shock loading of alumina , 1998 .
[6] C. B. Carter,et al. Crystallization of calcium hexaluminate on basal alumina , 1998 .
[7] I. Teoreanu,et al. Alumina Refractory Masses Hardened at Normal Temperatures by Coagulation , 1997 .
[8] L. An,et al. R-Curve Behavior of In-Situ-Toughened Al2O3:CaAl12O19 Ceramic Composites , 1996 .
[9] L. An,et al. Control of calcium hexaluminate grain morphology in in-situ toughened ceramic composites , 1996, Journal of Materials Science.
[10] R. Hay,et al. Textured magnetoplumbite fiber-matrix interphase derived from sol-gel fiber coatings , 1996 .
[11] B. Lawn,et al. Damage-resistant alumina-based layer composites , 1996 .
[12] J. Moya,et al. Reactive coating on alumina substrates : calcium and barium hexa aluminates , 1994 .
[13] T. Nishida,et al. Effect of Notch‐Root Radius on the Fracture Toughness of a Fine‐Grained Alumina , 1994 .
[14] H. Arai,et al. Recent progress in high-temperature catalytic combustion , 1991 .
[15] K. Eguchi,et al. High-Temperature Steam Reforming of Hydrocarbons over Nickel/Hexaaluminate Catalysts , 1991 .
[16] B. Lawn,et al. Role of grain size in the strength and R-curve properties of alumina , 1990 .
[17] Huesup Song,et al. Origin and growth kinetics of platelike abnormal grains in liquid-phase-sintered alumina , 1990 .
[18] T. Nagaoka,et al. Mechanical properties of hot-pressed calcium hexaluminate ceramics , 1990 .
[19] F. Marumo,et al. Structure refinement of CaO·6Al2O3 , 1988 .
[20] David E. Clark,et al. Nuclear waste solids , 1986 .
[21] E. Dörre,et al. Alumina: Processing, Properties, and Applications , 1984 .
[22] Howard J. Sanders,et al. High-tech ceramics , 1984 .
[23] P. Morgan,et al. The Magnetoplumbite Crystal Structure as a Radwaste Host , 1982 .
[24] David R. Clarke,et al. Leaching of polyphase nuclear waste ceramics: microstructural and phase characterization , 1982 .
[25] B. Lawn,et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: II, Strength Method , 1981 .
[26] Brian R. Lawn,et al. A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I , 1981 .
[27] David R. Clarke,et al. High-alumina tailored nuclear waste ceramics , 1981 .
[28] G. Brindley,et al. Solid State Reactions between CaO and α-Al2O3 , 1968 .
[29] J. Chevalier,et al. EFFECT OF GRAIN SIZE ON CRACK GROWTH IN ALUMINA , 2002 .
[30] C. Bethencourt. Formation, microstructure et propriétés de l'hexaluminate de calcium , 2000 .
[31] Hiroshi Tada,et al. The stress analysis of cracks handbook , 2000 .
[32] R. Torrecillas,et al. Influence of Fe3+ on sintering and microstructural evolution of reaction sintered calcium hexaluminate , 1998 .
[33] I. Low,et al. Physical and Mechanical Characteristics of In-situ Alumina/calcium Hexaluminate Composites , 1998 .
[34] Jae-Gwan Park,et al. Potential models for multicomponent oxides: Hexa-aluminates , 1996 .
[35] F. Mignard,et al. Acoustic emission monitoring of damage evaluation in ceramics submitted to thermal shock , 1995 .
[36] F. Mignard. Etude du comportement au choc et a la fatigue thermiques de céramiques pour applications industrielles , 1994 .
[37] Bengt Hallstedl. Assessment of the CaO‐Al2O3 System , 1990 .
[38] A. Lejus,et al. Les composés de type magnétoplombite et SLNA, matériaux pour le stockage d'éléments radioactifs? , 1985 .
[39] R. Collongues. Applications générales des phases de type alumine β et magnetoplombite , 1985 .
[40] J. Halloran. ROLE OF POWDER AGGLOMERATES IN CERAMIC PROCESSING. , 1984 .
[41] D. S. Buist. A Study of Calcium Hexaluminate , 1968 .