Peptide-based Targeting of Fluorescent Zinc Sensors to the Plasma Membrane of Live Cells.

Combining fluorescent zinc sensors with the facile syntheses and biological targeting capabilities of peptides, we created green- and blue-emitting probes that, (i) are readily prepared on the solid-phase, (ii) retain the photophysical and zinc-binding properties of the parent sensor, and (iii) can be directed to the extracellular side of plasma membranes in live cells for detection of mobile zinc.

[1]  Charles P. Fontaine,et al.  Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. , 2010, Metallomics : integrated biometal science.

[2]  K. Tóth,et al.  Influence of location of a fluorescent zinc probe in brain slices on its response to synaptic activation. , 2006, Journal of neurophysiology.

[3]  A. Bush,et al.  The neurobiology of zinc in health and disease , 2005, Nature Reviews Neuroscience.

[4]  S. Lippard,et al.  Chelators for investigating zinc metalloneurochemistry. , 2013, Current opinion in chemical biology.

[5]  A. Palmer,et al.  New sensors for quantitative measurement of mitochondrial Zn(2+). , 2012, ACS chemical biology.

[6]  Zijian Guo,et al.  Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors , 2004 .

[7]  A. Palmer,et al.  Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes. , 2012, Biochimica et biophysica acta.

[8]  R. Franklin,et al.  Zinc is decreased in prostate cancer: an established relationship of prostate cancer! , 2010, JBIC Journal of Biological Inorganic Chemistry.

[9]  Rebecca A. Bozym,et al.  Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro , 2010, Experimental biology and medicine.

[10]  R. Franklin,et al.  Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. , 2005, Mitochondrion.

[11]  W. Chae,et al.  Synthetic control over photoinduced electron transfer in phosphorescence zinc sensors. , 2013, Journal of the American Chemical Society.

[12]  M. Taki,et al.  Development of a cholesterol-conjugated fluorescent sensor for site-specific detection of zinc ion at the plasma membrane. , 2011, Organic letters.

[13]  S. Lippard,et al.  Membrane-permeable and -impermeable sensors of the Zinpyr family and their application to imaging of hippocampal zinc in vivo. , 2004, Chemistry & biology.

[14]  D. Petering,et al.  Sensor specific imaging of proteomic Zn2+ with zinquin and TSQ after cellular exposure to N-ethylmaleimide. , 2012, Metallomics : integrated biometal science.

[15]  K. Ohkubo,et al.  Phosphorescent sensor for biological mobile zinc. , 2011, Journal of the American Chemical Society.

[16]  Steven Mills,et al.  Colocalization of fluorescent markers in confocal microscope images of plant cells , 2008, Nature Protocols.

[17]  B. Imperiali,et al.  Modular and tunable chemosensor scaffold for divalent zinc. , 2003, Journal of the American Chemical Society.

[18]  A. Jasanoff,et al.  Manganese displacement from Zinpyr-1 allows zinc detection by fluorescence microscopy and magnetic resonance imaging. , 2010, Chemical communications.

[19]  Michael D. Pluth,et al.  Biochemistry of mobile zinc and nitric oxide revealed by fluorescent sensors. , 2011, Annual review of biochemistry.

[20]  Carla G. Taylor Zinc, the Pancreas, and Diabetes: Insights from Rodent Studies and Future Directions , 2005, Biometals.

[21]  G. Walkup,et al.  Fluorescent chemosensors for divalent zinc based on zinc finger domains. Enhanced oxidative stability, metal binding affinity, and structural and functional characterization , 1997 .

[22]  Christopher J Chang,et al.  Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. , 2012, Nature chemistry.

[23]  J. Smotrys,et al.  Palmitoylation of intracellular signaling proteins: regulation and function. , 2004, Annual review of biochemistry.

[24]  H. Gras-masse,et al.  The deprotection of Lys(Mtt) revisited. , 2000, Journal of peptide science : an official publication of the European Peptide Society.

[25]  Dylan W Domaille,et al.  Synthetic fluorescent sensors for studying the cell biology of metals. , 2008, Nature chemical biology.

[26]  Amy E Palmer,et al.  Genetically Encoded Sensors to Elucidate Spatial Distribution of Cellular Zinc* , 2009, The Journal of Biological Chemistry.

[27]  J. Berg,et al.  A Fluorescent Zinc Probe Based on Metal-Induced Peptide Folding , 1996 .

[28]  A. Palmer,et al.  Measuring steady-state and dynamic endoplasmic reticulum and Golgi Zn2+ with genetically encoded sensors , 2011, Proceedings of the National Academy of Sciences.

[29]  B. Imperiali,et al.  Design and Evaluation of a Peptidyl Fluorescent Chemosensor for Divalent Zinc , 1996 .

[30]  Roger Y. Tsien,et al.  A New Cell-Permeable Fluorescent Probe for Zn2+ , 2000 .

[31]  V. López,et al.  Zinc in specialized secretory tissues: roles in the pancreas, prostate, and mammary gland. , 2011, Advances in nutrition.

[32]  S. Lippard,et al.  Imaging mobile zinc in biology. , 2010, Current opinion in chemical biology.

[33]  Rebecca A. Bozym,et al.  Measuring picomolar intracellular exchangeable zinc in PC-12 cells using a ratiometric fluorescence biosensor. , 2006, ACS chemical biology.

[34]  Walter Mier,et al.  Manual Solid-Phase Peptide Synthesis of Metallocene-Peptide Bioconjugates. , 2007 .

[35]  C. Bertozzi,et al.  Imaging beyond the proteome. , 2012, Chemical communications.

[36]  Elizabeth M. Nolan,et al.  Organelle-specific zinc detection using zinpyr-labeled fusion proteins in live cells. , 2008, Journal of the American Chemical Society.

[37]  Guy A Rutter,et al.  Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis , 2009, Nature Methods.

[38]  Alan G. Ryder,et al.  Investigating tryptophan quenching of fluorescein fluorescence under protolytic equilibrium. , 2009, The journal of physical chemistry. A.

[39]  J. McNamara,et al.  Vesicular Zinc Promotes Presynaptic and Inhibits Postsynaptic Long-Term Potentiation of Mossy Fiber-CA3 Synapse , 2011, Neuron.

[40]  G. Rutter,et al.  Imaging dynamic insulin release using a fluorescent zinc indicator for monitoring induced exocytotic release (ZIMIR) , 2011, Proceedings of the National Academy of Sciences.

[41]  Zhiqian Guo,et al.  A cyanine-based fluorescent sensor for detecting endogenous zinc ions in live cells and organisms. , 2012, Biomaterials.

[42]  R. Tsien,et al.  Fluorescent sensors for Zn(2+) based on a fluorescein platform: synthesis, properties and intracellular distribution. , 2001, Journal of the American Chemical Society.

[43]  W. Nau,et al.  A 10-A spectroscopic ruler applied to short polyprolines. , 2007, Journal of the American Chemical Society.

[44]  Prodrug Strategies in Anticancer Chemotherapy , 2008, ChemMedChem.

[45]  S. Lincoln,et al.  Coordination and fluorescence of the intracellular Zn2+ probe [2-methyl-8-(4-toluenesulfonamido)-6-quinolyloxy]acetic acid (Zinquin A) in ternary Zn2+ complexes. , 2003, Journal of the American Chemical Society.

[46]  S. Kelley,et al.  Cell-penetrating peptides as delivery vehicles for biology and medicine. , 2008, Organic & biomolecular chemistry.

[47]  Stephen J Lippard,et al.  Small-molecule fluorescent sensors for investigating zinc metalloneurochemistry. , 2009, Accounts of chemical research.

[48]  C. Fahrni,et al.  Aqueous Coordination Chemistry of Quinoline-Based Fluorescence Probes for the Biological Chemistry of Zinc , 1999 .