Belief networks, hidden Markov models, and Markov random fields: A unifying view

[1]  Brendan J. Frey,et al.  Iterative Decoding of Compound Codes by Probability Propagation in Graphical Models , 1998, IEEE J. Sel. Areas Commun..

[2]  Jung-Fu Cheng,et al.  Turbo Decoding as an Instance of Pearl's "Belief Propagation" Algorithm , 1998, IEEE J. Sel. Areas Commun..

[3]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[4]  A. Benveniste,et al.  High-level primitives for recursive maximum likelihood estimation , 1996, IEEE Trans. Autom. Control..

[5]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..

[6]  Cristiana Larizza,et al.  A Unified Approach for Modeling Longitudinal and Failure Time Data, With Application in Medical Monitoring , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[8]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[9]  Michael I. Jordan,et al.  Exploiting Tractable Substructures in Intractable Networks , 1995, NIPS.

[10]  Michael P. Wellman,et al.  Real-world applications of Bayesian networks , 1995, CACM.

[11]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[12]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[13]  P. Games Correlation and Causation: A Logical Snafu , 1990 .

[14]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[15]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[16]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[17]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[18]  Geoffrey E. Hinton,et al.  Learning and relearning in Boltzmann machines , 1986 .

[19]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[20]  C. Robert Kenley INFLUENCE DIAGRAM MODELS WITH CONTINUOUS VARIABLES , 1986 .

[21]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .