Three-dimensional imaging characteristics of the HEAD PENN-PET scanner.

UNLABELLED A volume-imaging PET scanner, without interplane septa, for brain imaging has been designed and built to achieve high performance, specifically in spatial resolution and sensitivity. The scanner is unique in its use of a single annular crystal of Nal(Tl), which allows a field of view (FOV) of 25.6 cm in both the transverse and axial directions. Data are reconstructed into an image matrix of 128(3) with (2 mm)3 voxels, using three-dimensional image reconstruction algorithms. METHODS Point-source measurements are performed to determine spatial resolution over the scanner FOV, and cylindrical phantom distributions are used to determine the sensitivity, scatter fraction and counting rate performance of the system. A three-dimensional brain phantom and 18F-FDG patient studies are used to evaluate image quality with three-dimensional reconstruction algorithms. RESULTS The system spatial resolution is measured to be 3.5 mm in both the transverse and axial directions, in the center of the FOV. The true sensitivity, using the standard NEMA phantom (6 liter), is 660 kcps/microCi/ml, after subtracting a scatter fraction of 34%. Due to deadtime effects, we measure a peak true counting rate, after scatter and randoms subtraction, of 100 kcps at 0.7 mCi for a smaller brain-sized (1.1 liter) phantom, and 70 kcps for a head-sized (2.5 liter) phantom at the same activity. A typical 18F-FDG clinical brain study requires only 2 mCi to achieve high statistics (100 million true events) with a scan time of 30 min. CONCLUSION The HEAD PENN-PET scanner is based on a cost-effective design using Nal(Tl) and has been shown to achieve high performance for brain studies and pediatric whole-body studies. As a full-time three-dimensional imaging scanner with a very large axial acceptance angle, high sensitivity is achieved. The system becomes counting-rate limited as the activity is increased, but we achieve high image quality with a small injected dose. This is a significant advantage for clinical imaging, particularly for pediatric patients.

[1]  Christopher J. Thompson,et al.  Two new strategies to increase the signal to noise ratio in positron volume imaging , 1993 .

[2]  Gerd Muehllehner,et al.  Correction of distortions in a discontinuous image , 1994 .

[3]  G. E. Miles,et al.  A local coincidence triggering system for PET tomographs composed of large-area position-sensitive detectors , 1990 .

[4]  Joel S. Karp,et al.  Practical considerations of the Wiener filtering technique on projection data for PET , 1994 .

[5]  Joel S. Karp,et al.  Triple energy window scatter correction technique in PET , 1994, IEEE Trans. Medical Imaging.

[6]  Joel S. Karp,et al.  Design and performance of the HEAD PENN-PET scanner , 1994 .

[7]  Joel S. Karp,et al.  The countrate performance of the volume imaging PENN-PET scanner , 1994, IEEE Trans. Medical Imaging.

[8]  Joel S. Karp,et al.  Combination of Wiener filtering and singular value decomposition filtering for volume imaging PET , 1995 .

[9]  Simon R. Cherry,et al.  NECR analysis of 3D brain PET scanner designs , 1995 .

[10]  A Geissbuhler,et al.  Rotating positron tomographs revisited. , 1994, Physics in medicine and biology.

[11]  T G Turkington,et al.  Performance characteristics of a whole-body PET scanner. , 1994, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  S. Grootoonk,et al.  Correction for scatter using a dual energy window technique with a tomograph operated without septa , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[13]  G Muehllehner,et al.  Singles transmission in volume-imaging PET with a 137Cs source. , 1995, Physics in medicine and biology.

[14]  Joel S. Karp,et al.  Effect of increased axial field of view on the performance of a volume PET scanner , 1991, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[15]  G. Muehllehner,et al.  Three-dimensional image reconstruction for PET by multi-slice rebinning and axial image filtering , 1994, Physics in medicine and biology.

[16]  M. Defrise,et al.  Three dimensional reconstruction of PET data from a multi-ring camera , 1989 .

[17]  E. Hoffman,et al.  Quantitation in positron emission computed tomography: 7. A technique to reduce noise in accidental coincidence measurements and coincidence efficiency calibration. , 1986, Journal of computer assisted tomography.

[18]  E. Hoffman,et al.  Performance standards in positron emission tomography. , 1991, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[19]  M. P. Buchin,et al.  Performance Parameters of a Positron Imaging Camera , 1976, IEEE Transactions on Nuclear Science.

[20]  G Muehllehner,et al.  The high count rate performance of a two-dimensionally position-sensitive detector for positron emission tomography. , 1989, Physics in medicine and biology.

[21]  G Muehllehner,et al.  A positron camera using position-sensitive detectors: PENN-PET. , 1986, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  M.X.H. Yan,et al.  A fully automated algorithm for estimating attenuation length in 3D from projection data , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[23]  Joel S. Karp,et al.  Evemt Localization in a Continuous Scintillation Detector Using Digital Processing , 1986, IEEE Transactions on Nuclear Science.

[24]  H. Anger,et al.  GAMMA-RAY AND POSITRON SCINTILLATION CAMERA , 1963 .

[25]  D. Mankoff,et al.  Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. , 1990, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[26]  Paul Kinahan,et al.  Analytic 3D image reconstruction using all detected events , 1989 .

[27]  S Grootoonk,et al.  Performance Evaluation of the Positron Scanner ECAT EXACT , 1992, Journal of computer assisted tomography.