Selective Activation of the Deep Layers of the Human Primary Visual Cortex by Top-Down Feedback

[1]  S. Bok Der Einflu\ der in den Furchen und Windungen auftretenden Krümmungen der Gro\hirnrinde auf die Rindenarchitektur , 1929 .

[2]  M. Wong-Riley Reciprocal connections between striate and prestriate cortex in squirrel monkey as demonstrated by combined peroxidase histochemistry and autoradiography , 1978, Brain Research.

[3]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[4]  H. Duvernoy,et al.  Cortical blood vessels of the human brain , 1981, Brain Research Bulletin.

[5]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[6]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[7]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[8]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[9]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[10]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[11]  G. Glover,et al.  Retinotopic organization in human visual cortex and the spatial precision of functional MRI. , 1997, Cerebral cortex.

[12]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[13]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[14]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[16]  H. Spekreijse,et al.  FigureGround Segregation in a Recurrent Network Architecture , 2002, Journal of Cognitive Neuroscience.

[17]  S. Hestrin,et al.  Synaptic Interactions of Late-Spiking Neocortical Neurons in Layer 1 , 2003, The Journal of Neuroscience.

[18]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[19]  Tai Sing Lee,et al.  Hierarchical Bayesian inference in the visual cortex. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  A. Thomson,et al.  Interlaminar connections in the neocortex. , 2003, Cerebral cortex.

[21]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[22]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[23]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[24]  Denis Cousineau,et al.  Confidence intervals in within-subject designs: A simpler solution to Loftus and Masson's method , 2005 .

[25]  Egill Rostrup,et al.  Motion or activity: their role in intra- and inter-subject variation in fMRI , 2005, NeuroImage.

[26]  Nikos K Logothetis,et al.  Laminar specificity in monkey V1 using high-resolution SE-fMRI. , 2006, Magnetic resonance imaging.

[27]  Steen Moeller,et al.  Combined imaging–histological study of cortical laminar specificity of fMRI signals , 2006, NeuroImage.

[28]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[29]  Junjie Liu,et al.  Laminar profiles of functional activity in the human brain , 2007, NeuroImage.

[30]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[31]  N. Logothetis,et al.  Neurophysiology of the BOLD fMRI Signal in Awake Monkeys , 2008, Current Biology.

[32]  Richard D. Morey,et al.  Confidence Intervals from Normalized Data: A correction to Cousineau (2005) , 2008 .

[33]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[34]  M. P. Zwiers,et al.  EPI DISTORTION CORRECTION BY CONSTRAINED NONLINEAR COREGISTRATION IMPROVES GROUP FMRI , 2009 .

[35]  Bruce Fischl,et al.  Accurate and robust brain image alignment using boundary-based registration , 2009, NeuroImage.

[36]  Karl J. Friston,et al.  A Dual Role for Prediction Error in Associative Learning , 2008, Cerebral cortex.

[37]  Karl J. Friston,et al.  Attention, Uncertainty, and Free-Energy , 2010, Front. Hum. Neurosci..

[38]  Katrin Amunts,et al.  Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. , 2010, Cerebral cortex.

[39]  D. Norris,et al.  Layer‐specific BOLD activation in human V1 , 2010, Human brain mapping.

[40]  Tobias Kober,et al.  MP2RAGE, a self bias-field corrected sequence for improved segmentation and T1-mapping at high field , 2010, NeuroImage.

[41]  Lawrence L. Wald,et al.  Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1 , 2010, NeuroImage.

[42]  Lawrence L. Wald,et al.  Three dimensional echo-planar imaging at 7 Tesla , 2010, NeuroImage.

[43]  B. Zemelman,et al.  The columnar and laminar organization of inhibitory connections to neocortical excitatory cells , 2010, Nature Neuroscience.

[44]  Peter J. Koopmans,et al.  Multi-echo fMRI of the cortical laminae in humans at 7T , 2011, NeuroImage.

[45]  Andrew G Webb,et al.  Quantitative assessment of the effects of high‐permittivity pads in 7 Tesla MRI of the brain , 2012, Magnetic resonance in medicine.

[46]  Janneke F. M. Jehee,et al.  Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex , 2012, Neuron.

[47]  Karl J. Friston,et al.  Free-Energy and Illusions: The Cornsweet Effect , 2011, Front. Psychology.

[48]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[49]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[50]  Current Biology , 2012, Current Biology.

[51]  Gang Chen,et al.  Layer-specific BOLD activation in awake monkey V1 revealed by ultra-high spatial resolution functional magnetic resonance imaging , 2013, NeuroImage.

[52]  K. Harris,et al.  Cortical connectivity and sensory coding , 2013, Nature.

[53]  Lars Muckli,et al.  Network interactions: non-geniculate input to V1 , 2013, Current Opinion in Neurobiology.

[54]  Pieter R. Roelfsema,et al.  Distinct Roles of the Cortical Layers of Area V1 in Figure-Ground Segregation , 2013, Current Biology.

[55]  6085 Improved cortical boundary registration for locally distorted fMRI , 2013 .

[56]  Pierre-Louis Bazin,et al.  Anatomically motivated modeling of cortical laminae , 2014, NeuroImage.

[57]  F. D. Lange,et al.  Shape Perception Simultaneously Up- and Downregulates Neural Activity in the Primary Visual Cortex , 2014, Current Biology.

[58]  Shaul Hestrin,et al.  Layer 6 Corticothalamic Neurons Activate a Cortical Output Layer, Layer 5a , 2014, The Journal of Neuroscience.

[59]  H. Heinze,et al.  Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding , 2014, Nature Communications.

[60]  David G. Norris,et al.  Diffusion tensor characteristics of gyrencephaly using high resolution diffusion MRI in vivo at 7T , 2015, NeuroImage.

[61]  Lucy S. Petro,et al.  Contextual Feedback to Superficial Layers of V1 , 2015, Current Biology.

[62]  Karl J. Friston,et al.  Cerebral hierarchies: predictive processing, precision and the pulvinar , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[63]  Klaas E. Stephan,et al.  A hemodynamic model for layered BOLD signals , 2016, NeuroImage.