Mobility Analysis of Parallel Manipulators and Pattern of Transform Matrix

[1]  C. Galletti,et al.  Single-loop kinematotropic mechanisms , 2001 .

[2]  Qinchuan Li,et al.  Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements , 2004, IEEE Transactions on Robotics and Automation.

[3]  K. Waldron The constraint analysis of mechanisms , 1966 .

[4]  Zhao Tie A Novel Spatial Four DOF Parallel Mechanism and Its Position Analysis , 2000 .

[5]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[6]  McCarthy,et al.  Geometric Design of Linkages , 2000 .

[7]  Zexiang Li,et al.  A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators , 2007, IEEE Transactions on Robotics.

[8]  Q. C. Li,et al.  General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators , 2002, Int. J. Robotics Res..

[9]  Xin-Jun Liu,et al.  A new family of spatial 3-DoF fully-parallel manipulators with high rotational capability , 2005 .

[10]  Charles W Stammers,et al.  Standardisation of Terminology , 2003 .

[11]  Ferdinand Freudenstein On the Variety of Motions Generated by Mechanisms , 1962 .

[12]  Daniel E. Whitney,et al.  The path method for analyzing mobility and constraint of mechanisms and assemblies , 2005, IEEE Transactions on Automation Science and Engineering.

[13]  J. Angeles,et al.  DETERMINATION DU DEGRE DE LIBERTE DES CHAINES CINEMATIQUE , 1988 .

[14]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: INDEX OF TERMS EMPLOYED , 1988 .

[15]  Jorge Angeles The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[16]  K. Hao Dual number method, rank of a screw system and generation of Lie sub-algebras , 1998 .

[17]  G. Gogu Mobility of mechanisms: a critical review , 2005 .

[18]  Jorge Angeles,et al.  The mechanical design of a novel Schönflies-motion generator , 2007 .

[19]  L. Tsai,et al.  Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator , 2000 .

[20]  H. Lipkin,et al.  Mobility of Overconstrained Parallel Mechanisms , 2006 .

[21]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[22]  R. Clavel,et al.  A Fast Robot with Parallel Geometry , 1988 .

[23]  G. Gogu Mobility and spatiality of parallel robots revisited via theory of linear transformations , 2005 .

[24]  Jaime Gallardo-Alvarado,et al.  Lie Algebra and the Mobility of Kinematic Chains , 2003, J. Field Robotics.

[25]  Qinchuan Li,et al.  Parallel Mechanisms With Bifurcation of Schoenflies Motion , 2009, IEEE Transactions on Robotics.

[26]  Clément Gosselin,et al.  On the Kinematic Design of Spherical Three-Degree-of- Freedom Parallel Manipulators , 1993, Int. J. Robotics Res..

[27]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[28]  J. M. Hervé The Lie group of rigid body displacements, a fundamental tool for mechanism design , 1999 .

[29]  Chao Wu,et al.  A new family of spatial 3-DOF parallel manipulators with two translational and one rotational DOFs , 2009, Robotica.

[30]  Raffaele Di Gregorio,et al.  Kinematics of a new spherical parallel manipulator with three equal legs: The 3-URC wrist , 2001, J. Field Robotics.

[31]  L. D. Aguilera,et al.  A More General Mobility Criterion for Parallel Platforms , 2004 .

[32]  Gregory Walsh,et al.  Kinematics of a novel three DOF translational platform , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[33]  Clément Gosselin,et al.  Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory , 2002 .