Carbon dioxide sensing with sulfonated polyaniline

Abstract The use of polyaniline and especially sulfonated polyaniline (SPAN) is explored for sensing carbon dioxide (CO 2 ) at room temperature. Frequency-dependent AC measurements were carried out to detect changes in impedance of the polymer, drop casted on interdigitated electrodes, when exposed to CO 2 gas. Aqueous pH buffers were first used to study pH-dependent conductivity to identify a good candidate polymer for CO 2 sensing. Emeraldine-base polyaniline exhibits only a significant conductivity change below pH 4 whereas SPAN shows also a conductivity change between pH 4 and 7. This makes SPAN more suitable for CO 2 sensing than emeraldine-base polyaniline. The impedance of SPAN films is found to decrease when exposed to CO 2 concentrations above 20,000 ppm. Blending SPAN with polyvinyl alcohol further increases the sensitivity for CO 2 .

[1]  T. Ahonen,et al.  Greenhouse Monitoring with Wireless Sensor Network , 2008, 2008 IEEE/ASME International Conference on Mechtronic and Embedded Systems and Applications.

[2]  L. Do,et al.  Charge transport in a π-conjugated polymer: Generalized Langevin equation analysis , 2000 .

[3]  Jens Zosel,et al.  The measurement of dissolved and gaseous carbon dioxide concentration , 2011 .

[4]  J. Fergus,et al.  Suitability of emeraldine base polyaniline-PVA composite film for carbon dioxide sensing , 2006 .

[5]  Wouter Olthuis,et al.  A swelling hydrogel-based PCO2 sensor , 2003 .

[6]  A. Karyakin,et al.  Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions , 1994 .

[7]  Y. Tao,et al.  Polyacrylamide hydrogels with trapped sulfonated polyaniline , 2005 .

[8]  S. Chen,et al.  Structure characterization of self-acid-doped sulfonic acid ring-substituted polyaniline in its aqueous solutions and as solid film , 1996 .

[9]  Hua Bai,et al.  Gas Sensors Based on Conducting Polymers , 2007, Sensors (Basel, Switzerland).

[10]  Arthur J. Epstein,et al.  Effect of sulfonic acid group on polyaniline backbone , 1991 .

[11]  M. Freund,et al.  A switchable self-doped polyaniline: interconversion between self-doped and non-self-doped forms. , 2004, Journal of the American Chemical Society.

[12]  Zulfiqur Ali,et al.  Chemical Sensors for Electronic Nose Systems , 2005 .

[13]  A. Guiseppi-Elie,et al.  Design considerations in the use of interdigitated microsensor electrode arrays (IMEs) for impedimetric characterization of biomimetic hydrogels , 2011, Biomedical microdevices.

[14]  A. Star,et al.  Biosensors based on one-dimensional nanostructures , 2011 .

[15]  K. Ogura,et al.  A CO 2 Sensing Composite Film Consisting of Base‐Type Polyaniline and Poly(vinyl alcohol) , 1999 .

[16]  Noel D.G. White,et al.  Development of carbon dioxide (CO2) sensor for grain quality monitoring , 2010 .

[17]  B. J. Tongol,et al.  Surface and electrochemical studies of a carbon dioxide probe based on conducting polypyrrole , 2003 .

[18]  Patrick Merken,et al.  A low-power readout circuit for nanowire based hydrogen sensor , 2010, Microelectron. J..

[19]  V.L. Narasimhan,et al.  Greenhouse Asset Management Using Wireless Sensor-Actor Networks , 2007, International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM'07).

[20]  Fabienne Poncin-Epaillard,et al.  Polyaniline as a new sensitive layer for gas sensors , 2003 .

[21]  B. Acock,et al.  Crop responses to carbon dioxide doubling: a literature survey , 1986 .

[22]  J. Amthor Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration , 2001 .

[23]  Andrew P. Monkman,et al.  Polyaniline thin films for gas sensing , 1995 .

[24]  J. Fergus,et al.  Impedance spectroscopy of thin films of emeraldine base polyaniline and its implications for chemical sensing , 2006 .

[25]  Veronica A. J. Doerr,et al.  Environmental sensor networks for vegetation, animal and soil sciences , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[26]  M. Bindi,et al.  [Responses of agricultural crops of free-air CO2 enrichment]. , 2002, Ying yong sheng tai xue bao = The journal of applied ecology.

[27]  Masaharu Nakayama,et al.  The humidity dependence of the electrical conductivity of a solublepolyaniline–poly(vinyl alcohol) composite film , 1997 .

[28]  Mira Josowicz,et al.  Composites of intrinsically conducting polymers as sensing nanomaterials. , 2008, Chemical reviews.

[29]  J. Yue,et al.  Comparison of different synthetic routes for sulphonation of polyaniline , 1992 .

[30]  Carlos Eduardo Cugnasca,et al.  A Proposal of Greenhouse Control Using Wireless Sensor Networks , 2006 .

[31]  K. Ogura,et al.  A CO 2 Sensor with Polymer Composites Operating at Ordinary Temperature , 2000 .

[32]  Nataliya V. Roznyatovskaya,et al.  Conducting polymers in chemical sensors and arrays. , 2008, Analytica chimica acta.

[33]  M. Freund,et al.  Electroactivity of electrochemically synthesized poly(aniline boronic acid) as a function of pH: Role of self-doping , 2004 .

[34]  A. F. Richter,et al.  Polyaniline: a new concept in conducting polymers , 1987 .

[35]  Alan G. MacDiarmid,et al.  ‘Polyaniline’: Protonic acid doping of the emeraldine form to the metallic regime , 1986 .

[36]  K. Ogura,et al.  CO 2 -sensitive Characteristics of Base-type Polyaniline/Poly(vinyl alcohol) Composites at Room Temperature and Effects of Coexisting Gases , 2001 .

[37]  A. Malinauskas Self-doped polyanilines , 2004 .

[38]  Richard B. Kaner,et al.  Polyaniline Nanofiber Gas Sensors: Examination of Response Mechanisms , 2004 .

[39]  Digvir S. Jayas,et al.  Carbon Dioxide (CO2) Sensors for the Agri-food Industry—A Review , 2009 .

[40]  A. Epstein,et al.  Protonic acid doping of two classes of the emeraldine form of polyaniline , 1992 .

[41]  Arthur J. Epstein,et al.  Synthesis of self-doped conducting polyaniline , 1990 .

[42]  Patrick Merken,et al.  Ultralow-power hydrogen sensing with single palladium nanowires , 2009 .

[43]  A. J. Epstein,et al.  Synthesis and Physical Properties of Highly Sulfonated Polyaniline , 1996 .

[44]  Yu-Lin Wang,et al.  CO2 detection using polyethylenimine/starch functionalized AlGaN∕GaN high electron mobility transistors , 2008 .

[45]  M. K. Andrews,et al.  Resistance characteristics of conducting polymer films used in gas sensors , 1997 .

[46]  A. Heeger,et al.  Polarons and bipolarons on a conducting polymer in solution , 1987 .

[47]  A. Amirudin,et al.  Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals , 1995 .

[48]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[49]  Pietro Siciliano,et al.  Conducting polymers doped with metallic inclusions: New materials for gas sensors , 1998 .

[50]  K. Neoh,et al.  X-ray photoelectron spectroscopic studies of electroactive polymers , 1993 .

[51]  Wu-Song Huang,et al.  Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes , 1986 .

[52]  Pilar Barreiro,et al.  A Review of Wireless Sensor Technologies and Applications in Agriculture and Food Industry: State of the Art and Current Trends , 2009, Sensors.

[53]  J. Severinghaus,et al.  Electrodes for blood pO2 and pCO2 determination. , 1958, Journal of applied physiology.