Comparative and Functional Genomics of Rhodococcus opacus PD630 for Biofuels Development

The Actinomycetales bacteria Rhodococcus opacus PD630 and Rhodococcus jostii RHA1 bioconvert a diverse range of organic substrates through lipid biosynthesis into large quantities of energy-rich triacylglycerols (TAGs). To describe the genetic basis of the Rhodococcus oleaginous metabolism, we sequenced and performed comparative analysis of the 9.27 Mb R. opacus PD630 genome. Metabolic-reconstruction assigned 2017 enzymatic reactions to the 8632 R. opacus PD630 genes we identified. Of these, 261 genes were implicated in the R. opacus PD630 TAGs cycle by metabolic reconstruction and gene family analysis. Rhodococcus synthesizes uncommon straight-chain odd-carbon fatty acids in high abundance and stores them as TAGs. We have identified these to be pentadecanoic, heptadecanoic, and cis-heptadecenoic acids. To identify bioconversion pathways, we screened R. opacus PD630, R. jostii RHA1, Ralstonia eutropha H16, and C. glutamicum 13032 for growth on 190 compounds. The results of the catabolic screen, phylogenetic analysis of the TAGs cycle enzymes, and metabolic product characterizations were integrated into a working model of prokaryotic oleaginy.

[1]  A. Steinbüchel,et al.  A Novel Bifunctional Wax Ester Synthase/Acyl-CoA:Diacylglycerol Acyltransferase Mediates Wax Ester and Triacylglycerol Biosynthesis inAcinetobacter calcoaceticus ADP1* , 2003, The Journal of Biological Chemistry.

[2]  Adrián F. Alvarez,et al.  Biosynthesis of storage compounds by Rhodococcus jostii RHA1 and global identification of genes involved in their metabolism , 2008, BMC Genomics.

[3]  P. Kolattukudy,et al.  Synthesis of mycocerosic acids from methylmalonyl coenzyme A by cell-free extracts of Mycobacterium tuberculosis var. bovis BCG. , 1983, The Journal of biological chemistry.

[4]  R. Hunter,et al.  Trehalose 6,6'-dimycolate and lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. , 2006, The American journal of pathology.

[5]  M. Vasil,et al.  Purification and Characterization of Mycobacterial Phospholipase A : an Activity Associated with Mycobacterial Cutinase , 2006 .

[6]  B. Gibson,et al.  Identification of a Novel Sialic Acid Transporter in Haemophilus ducreyi , 2005, Infection and Immunity.

[7]  Sean R. Eddy,et al.  Rfam: annotating non-coding RNAs in complete genomes , 2004, Nucleic Acids Res..

[8]  Chuong B. Do,et al.  Access the most recent version at doi: 10.1101/gr.926603 References , 2003 .

[9]  G. Thomas,et al.  Sialic acid utilization by bacterial pathogens. , 2007, Microbiology.

[10]  H. Sprecher,et al.  The Mycobacterium tuberculosis pks2 Gene Encodes the Synthase for the Hepta- and Octamethyl-branched Fatty Acids Required for Sulfolipid Synthesis* , 2001, The Journal of Biological Chemistry.

[11]  P. Kolattukudy,et al.  Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis Bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. , 1985, The Journal of biological chemistry.

[12]  G. Thomas,et al.  Characterization of a novel sialic acid transporter of the sodium solute symporter (SSS) family and in vivo comparison with known bacterial sialic acid transporters. , 2010, FEMS microbiology letters.

[13]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[14]  S. Slater,et al.  Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-beta-hydroxybutyrate biosynthetic pathway , 1988, Journal of bacteriology.

[15]  Ying Huang,et al.  EFICAz2: enzyme function inference by a combined approach enhanced by machine learning , 2009, BMC Bioinformatics.

[16]  P. Sandra,et al.  Chemotaxonomy of bacteria by comprehensive GC and GC-MS in electron impact and chemical ionisation mode. , 2008, Journal of separation science.

[17]  H. Alvarez Biology of Rhodococcus , 2010 .

[18]  J. Eisen,et al.  A simple, fast, and accurate method of phylogenomic inference , 2008, Genome Biology.

[19]  E. Puglisi,et al.  Transcriptional Response of Rhodococcus aetherivorans I24 to Polychlorinated Biphenyl-Contaminated Sediments , 2010, Microbial Ecology.

[20]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[21]  M. Daffé,et al.  The Acyl-AMP Ligase FadD32 and AccD4-containing Acyl-CoA Carboxylase Are Required for the Synthesis of Mycolic Acids and Essential for Mycobacterial Growth , 2005, Journal of Biological Chemistry.

[22]  G. Besra,et al.  The Two Carboxylases of Corynebacterium glutamicum Essential for Fatty Acid and Mycolic Acid Synthesis , 2007, Journal of bacteriology.

[23]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[24]  Peter D. Karp,et al.  Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology , 2015, Briefings Bioinform..

[25]  Nagasuma R. Chandra,et al.  Flux Balance Analysis of Mycolic Acid Pathway: Targets for Anti-Tubercular Drugs , 2005, PLoS Comput. Biol..

[26]  A. Steinbüchel,et al.  Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630 , 1996, Archives of Microbiology.

[27]  A. Sinskey,et al.  pB264, a small, mobilizable, temperature sensitive plasmid from Rhodococcus , 2004, BMC Microbiology.

[28]  René L. Warren,et al.  The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse , 2006, Proceedings of the National Academy of Sciences.

[29]  Anne Pohlmann,et al.  Genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16 , 2006, Nature Biotechnology.

[30]  T. Steitz,et al.  The Crystal Structure of Yeast Fatty Acid Synthase, a Cellular Machine with Eight Active Sites Working Together , 2007, Cell.

[31]  M. Mansour Reversed-phase high-performance liquid chromatography purification of methyl esters of C(16)-C(28) polyunsaturated fatty acids in microalgae, including octacosaoctaenoic acid [28:8(n-3)]. , 2005, Journal of chromatography. A.

[32]  G. Daum,et al.  Synthesis and turnover of non-polar lipids in yeast. , 2008, Progress in lipid research.

[33]  W. Liang,et al.  9) TM4 Microarray Software Suite , 2006 .

[34]  S. Salzberg,et al.  Improved microbial gene identification with GLIMMER. , 1999, Nucleic acids research.

[35]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[36]  K. Isono,et al.  Characteristic features of the nucleotide sequences of yeast mitochondrial ribosomal protein genes as analyzed by computer program GeneMark. , 1994, DNA research : an international journal for rapid publication of reports on genes and genomes.

[37]  Matthew W Vetting,et al.  New insight into the mechanism of action of and resistance to isoniazid: interaction of Mycobacterium tuberculosis enoyl-ACP reductase with INH-NADP. , 2007, Journal of the American Chemical Society.

[38]  D. Vance,et al.  Purification and properties of the fatty acid synthetase from Mycobacterium phlei. , 1973, The Journal of biological chemistry.

[39]  Christopher M. Sassetti,et al.  Mycobacterial persistence requires the utilization of host cholesterol , 2008, Proceedings of the National Academy of Sciences.

[40]  M. Cynamon,et al.  The Largest Open Reading Frame (pks12) in the Mycobacterium tuberculosis Genome Is Involved in Pathogenesis and Dimycocerosyl Phthiocerol Synthesis , 2003, Infection and Immunity.

[41]  M. Cynamon,et al.  Attenuation of Mycobacterium tuberculosis by Disruption of a mas-Like Gene or a Chalcone Synthase-Like Gene, Which Causes Deficiency in Dimycocerosyl Phthiocerol Synthesis , 2003, Journal of bacteriology.

[42]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[43]  L. Dijkhuizen,et al.  A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages , 2007, Proceedings of the National Academy of Sciences.

[44]  William R. Jacobs,et al.  Pyrazinamide inhibits the eukaryotic-like fatty acid synthetase I (FASI) of Mycobacterium tuberculosis , 2000, Nature Medicine.

[45]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[46]  Vojo Deretic,et al.  Mechanisms of action of isoniazid , 2006, Molecular microbiology.

[47]  Mahavir Singh,et al.  3‐Ketosteroid 9α‐hydroxylase is an essential factor in the pathogenesis of Mycobacterium tuberculosis , 2010, Molecular microbiology.

[48]  A. Steinbüchel,et al.  Analysis of neutral lipid biosynthesis in Streptomyces avermitilis MA-4680 and characterization of an acyltransferase involved herein , 2009, Applied Microbiology and Biotechnology.

[49]  S. Kikuchi,et al.  Purification and characterization of an unusually large fatty acid synthase from Mycobacterium tuberculosis var. bovis BCG. , 1992, Archives of biochemistry and biophysics.

[50]  A. Sinskey,et al.  The Rhodococcus opacus PD630 Heparin-Binding Hemagglutinin Homolog TadA Mediates Lipid Body Formation , 2010, Applied and Environmental Microbiology.

[51]  L. Eltis,et al.  Adventures in Rhodococcus - from steroids to explosives. , 2011, Canadian journal of microbiology.

[52]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[53]  K. Katoh,et al.  MAFFT version 5: improvement in accuracy of multiple sequence alignment , 2005, Nucleic acids research.

[54]  Anne Pohlmann,et al.  A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutropha H16 , 2009, Proteomics.

[55]  I. Sutcliffe Cell envelope composition and organisation in the genus Rhodococcus , 1998, Antonie van Leeuwenhoek.

[56]  S Miyano,et al.  Open source clustering software. , 2004, Bioinformatics.

[57]  A. Sinskey,et al.  Poly-beta-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). , 1989, The Journal of biological chemistry.

[58]  E. Vimr,et al.  Diversity of Microbial Sialic Acid Metabolism , 2004, Microbiology and Molecular Biology Reviews.

[59]  Jonathan Hughes,et al.  Application of whole cell rhodococcal biocatalysts in acrylic polymer manufacture , 1998, Antonie van Leeuwenhoek.

[60]  A. Steinbüchel,et al.  Cloning and characterization of a gene involved in triacylglycerol biosynthesis and identification of additional homologous genes in the oleaginous bacterium Rhodococcus opacus PD630. , 2008, Microbiology.

[61]  L. Alvarez-Cohen,et al.  Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 transform PBDEs , 2011, Biotechnology and bioengineering.

[62]  E. Rubin,et al.  Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  I. Smith,et al.  Cholesterol metabolism increases the metabolic pool of propionate in Mycobacterium tuberculosis. , 2009, Biochemistry.

[64]  M. Fukuda,et al.  A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1 , 1995, Applied and environmental microbiology.

[65]  Peer Bork,et al.  Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation , 2007, Bioinform..

[66]  D. Jendrossek Polyhydroxyalkanoate Granules Are Complex Subcellular Organelles (Carbonosomes) , 2009, Journal of bacteriology.

[67]  J. Davies,et al.  Transcriptomic Assessment of Isozymes in the Biphenyl Pathway of Rhodococcus sp. Strain RHA1 , 2006, Applied and Environmental Microbiology.

[68]  S. Salzberg,et al.  Fast algorithms for large-scale genome alignment and comparison. , 2002, Nucleic acids research.

[69]  A. Steinbüchel,et al.  Triacylglycerols in prokaryotic microorganisms , 2002, Applied Microbiology and Biotechnology.

[70]  A. Sinskey,et al.  High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. , 2010, Journal of biotechnology.

[71]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[72]  Peter D. Karp,et al.  Using functional and organizational information to improve genome-wide computational prediction of transcription units on pathway-genome databases , 2004, Bioinform..

[73]  Gitanjali Yadav,et al.  Novel Intermolecular Iterative Mechanism for Biosynthesis of Mycoketide Catalyzed by a Bimodular Polyketide Synthase , 2008, PLoS biology.

[74]  Satoru Miyano,et al.  Open source clustering software , 2004 .

[75]  Peter F. Hallin,et al.  RNAmmer: consistent and rapid annotation of ribosomal RNA genes , 2007, Nucleic acids research.

[76]  Anton J. Enright,et al.  Protein families and TRIBES in genome sequence space. , 2003, Nucleic acids research.

[77]  Peter D. Karp,et al.  A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases , 2004, BMC Bioinformatics.

[78]  O. Lenz,et al.  H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[79]  E. Schweizer,et al.  Microbial Type I Fatty Acid Synthases (FAS): Major Players in a Network of Cellular FAS Systems , 2004, Microbiology and Molecular Biology Reviews.

[80]  Peter D. Karp,et al.  Annotation-based inference of transporter function , 2008, ISMB.

[81]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[82]  P. Alvarez,et al.  7-Ketocholesterol Catabolism by Rhodococcus jostii RHA1 , 2009, Applied and Environmental Microbiology.

[83]  F. Hsu,et al.  Characterization of mycolic acids from the pathogen Rhodococcus equi by tandem mass spectrometry with electrospray ionization. , 2011, Analytical biochemistry.

[84]  A. Horswill,et al.  Salmonella typhimurium LT2 Catabolizes Propionate via the 2-Methylcitric Acid Cycle , 1999, Journal of bacteriology.

[85]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[86]  W. Liang,et al.  TM4 microarray software suite. , 2006, Methods in enzymology.

[87]  G. Besra,et al.  Mycobacterium tuberculosis pks12 Produces a Novel Polyketide Presented by CD1c to T Cells , 2004, The Journal of experimental medicine.

[88]  C. Khosla,et al.  Kinetic and Structural Analysis of a New Group of Acyl-CoA Carboxylases Found in Streptomyces coelicolor A3(2)* , 2002, The Journal of Biological Chemistry.

[89]  G. Besra,et al.  Acyl-CoA Carboxylases (accD2 and accD3), Together with a Unique Polyketide Synthase (Cg-pks), Are Key to Mycolic Acid Biosynthesis in Corynebacterianeae Such as Corynebacterium glutamicum and Mycobacterium tuberculosis* , 2004, Journal of Biological Chemistry.