An optimized design of full adder based on nanoscale quantum-dot cellular automata

Abstract Quantum-Dot Cellular Automata (QCA) technology uses quantum dots instead of transistors and diodes for performing the logical operation. Also, in logical circuits, many operations, such as multiplication, subtraction, and division are done using the adders. Therefore, this paper presents an efficient QCA-based adder design based on three layers. In contrast to the previous designs, the outputs in the proposed design come out from another side of the circuit which causes more efficient circuit design. In the proposed design, the input signals are not surrounded by the other cells and can easily be accessed. The simulation results using the QCA Designer approve that the offered circuit acts well and can be used as a high-performance design in the QCA. Also, they show that the design causes very low complexity, small area, short latency and fewer cell numbers.

[1]  Keivan Navi,et al.  Arithmetic Circuits of Redundant SUT-RNS , 2009, IEEE Transactions on Instrumentation and Measurement.

[2]  Keivan Navi,et al.  An Efficient Quantum-Dot Cellular Automata Full Adder Based on a New Convertible 7-Input Majority-Not Gate , 2020, IETE Journal of Research.

[3]  Ahmad Habibizad Navin,et al.  Designing High Speed Sequential Circuits by Quantum-Dot Cellular Automata: Memory Cell and Counter Study , 2015 .

[4]  Ahmad Habibizad Navin,et al.  The IGWM Method for Tabriz Traffic Modeling: Data-Oriented Approach , 2009, 2009 International Conference on Computer Technology and Development.

[5]  Ramesh Karri,et al.  The Robust QCA Adder Designs Using Composable QCA Building Blocks , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[6]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[7]  Graham A. Jullien,et al.  Performance comparison of quantum-dot cellular automata adders , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[8]  Karl-Fredrik Berggren,et al.  Quantum cellular automata - Theory, experimentation and prospects , 2006 .

[9]  Ismo Hänninen,et al.  Binary Adders on Quantum-Dot Cellular Automata , 2010, J. Signal Process. Syst..

[10]  Heumpil Cho Adder and multiplier design and analysis in quantum-dot cellular automata , 2006 .

[11]  Keivan Navi,et al.  A symmetric quantum-dot cellular automata design for 5-input majority gate , 2014 .

[12]  Mostafa Rahimi Azghadi,et al.  Restoring and non-restoring array divider designs in Quantum-dot Cellular Automata , 2015, Inf. Sci..

[13]  Brajesh Kumar Kaushik,et al.  Bus encoder design for crosstalk and power reduction in RLC modelled VLSI interconnects , 2015 .

[14]  Keivan Navi,et al.  Novel Robust Single Layer Wire Crossing Approach for Exclusive OR Sum of Products Logic Design with Quantum-Dot Cellular Automata , 2014, J. Low Power Electron..

[15]  Keivan Navi,et al.  New fully single layer QCA full-adder cell based on feedback model , 2015, Int. J. High Perform. Syst. Archit..

[16]  Guorui Li,et al.  Concentration estimation of formaldehyde using metal oxide semiconductor gas sensor array-based e-noses , 2014 .

[17]  Saeed Rasouli Heikalabad,et al.  A unique structure for the multiplexer in quantum-dot cellular automata to create a revolution in design of nanostructures , 2017 .

[18]  Nima Jafari Navimipour,et al.  Memory Designing Using Quantum-Dot Cellular Automata: Systematic Literature Review, Classification and Current Trends , 2017, J. Circuits Syst. Comput..

[19]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics , 2007 .

[20]  M. Asha Rani,et al.  Implementation of parallel adders using area efficient quantum dot cellular automata full adder , 2016, 2016 10th International Conference on Intelligent Systems and Control (ISCO).

[21]  Omid Kavehei,et al.  Efficient Reverse Converter Designs for the New 4-Moduli Sets $\{2^{n} -1, 2^{n}, 2^{n} +1, 2^{2n + 1}-1\}$ and $\{2^{n} -1, 2^{n} +1, 2^{2n}, 2^{2n} +1\}$ Based on New CRTs , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  M. Ottavi,et al.  Partially Reversible Pipelined QCA Circuits: Combining Low Power With High Throughput , 2011, IEEE Transactions on Nanotechnology.

[23]  G. Tóth Correlation and coherence in quantum-dot cellular automata , 2000 .

[24]  Saeed Rasouli Heikalabad,et al.  A testable parity conservative gate in quantum-dot cellular automata , 2017 .

[25]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[26]  Wolfgang Porod,et al.  Quantum cellular automata , 1994 .

[27]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[28]  G.A. Jullien,et al.  A method of majority logic reduction for quantum cellular automata , 2004, IEEE Transactions on Nanotechnology.

[29]  Mostafa Rahimi Azghadi,et al.  A Novel Design for Quantum-dot Cellular Automata Cells and Full Adders , 2007, ArXiv.

[30]  Snider,et al.  Digital logic gate using quantum-Dot cellular automata , 1999, Science.

[31]  Keivan Navi,et al.  Novel Efficient Adder Circuits for Quantum-Dot Cellular Automata , 2011 .

[32]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[33]  Bibhash Sen,et al.  Design of reliable universal QCA logic in the presence of cell deposition defect , 2017 .

[34]  Amir Fijany,et al.  New Design for Quantum Dots Cellular Automata to obtain Fault Tolerant Logic Gates , 2001 .

[35]  Graham A. Jullien,et al.  Design Tools for an Emerging SoC Technology: Quantum-Dot Cellular Automata , 2006, Proceedings of the IEEE.

[36]  Mostafa Rahimi Azghadi,et al.  Five-Input Majority Gate, a New Device for Quantum-Dot Cellular Automata , 2010 .

[37]  Keivan Navi,et al.  Designing Reconfigurable Quantum-Dot Cellular Automata Logic Circuits , 2013 .

[38]  A. Dzurak,et al.  Demonstration of a silicon-based quantum cellular automata cell , 2006 .

[39]  C. Lent,et al.  Power gain and dissipation in quantum-dot cellular automata , 2002 .

[40]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[41]  Mostafa Rahimi Azghadi,et al.  A new quantum-dot cellular automata full-adder , 2016, 2016 5th International Conference on Computer Science and Network Technology (ICCSNT).

[42]  W. Porod Quantum-Dot Devices and Quantum-Dot Cellular Automata , 1997 .

[43]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[44]  Keivan Navi,et al.  Design and evaluation of new majority gate-based RAM cell in quantum-dot cellular automata , 2015, Microelectron. J..

[45]  Jian-hong Yang,et al.  Edge direct tunneling current in nano‐scale MOSFET with high‐K dielectrics , 2007 .

[46]  Jing Huang,et al.  An Overview of Nanoscale Devices and Circuits , 2007, IEEE Design & Test of Computers.