Quantum Natural Language Processing on Near-Term Quantum Computers

In this work, we describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP. The language modelling framework we employ is that of compositional distributional semantics (DisCoCat), which extends and complements the compositional structure of pregroup grammars. Within this model, the grammatical reduction of a sentence is interpreted as a diagram, encoding a specific interaction of words according to the grammar. It is this interaction which, together with a specific choice of word embedding, realises the meaning (or "semantics") of a sentence. Building on the formal quantum-like nature of such interactions, we present a method for mapping DisCoCat diagrams to quantum circuits. Our methodology is compatible both with NISQ devices and with established Quantum Machine Learning techniques, paving the way to near-term applications of quantum technology to natural language processing.

[1]  Simone Severini,et al.  Quantum machine learning: a classical perspective , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  Dimitri Kartsaklis,et al.  Prior Disambiguation of Word Tensors for Constructing Sentence Vectors , 2013, EMNLP.

[3]  Marcello Benedetti,et al.  Parameterized quantum circuits as machine learning models , 2019, Quantum Science and Technology.

[4]  Anne Preller Linear Processing with Pregroups , 2007, Stud Logica.

[5]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[6]  Mehrnoosh Sadrzadeh,et al.  Experimental Support for a Categorical Compositional Distributional Model of Meaning , 2011, EMNLP.

[7]  Stephen Clark,et al.  A quantum teleportation inspired algorithm produces sentence meaning from word meaning and grammatical structure , 2013, ArXiv.

[8]  Stephen Clark,et al.  Mathematical Foundations for a Compositional Distributional Model of Meaning , 2010, ArXiv.

[9]  Kristan Temme,et al.  Supervised learning with quantum-enhanced feature spaces , 2018, Nature.

[10]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[11]  Dimitri Kartsaklis,et al.  Sentence entailment in compositional distributional semantics , 2015, Annals of Mathematics and Artificial Intelligence.

[12]  Mehrnoosh Sadrzadeh,et al.  Lambek vs. Lambek: Functorial vector space semantics and string diagrams for Lambek calculus , 2013, Ann. Pure Appl. Log..

[13]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[14]  Yiannis Vlassopoulos,et al.  Tensor network language model , 2017, ArXiv.

[15]  Stephen Clark,et al.  The Frobenius anatomy of word meanings I: subject and object relative pronouns , 2013, J. Log. Comput..

[16]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[17]  Stephen Clark,et al.  The Frobenius Anatomy of Relative Pronouns , 2013, MOL.

[18]  Stephen Clark,et al.  The Frobenius anatomy of word meanings II: possessive relative pronouns , 2014, J. Log. Comput..

[19]  Joachim Lambek,et al.  Pregroups and natural language processing , 2006 .

[20]  Dimitri Kartsaklis,et al.  Evaluating Neural Word Representations in Tensor-Based Compositional Settings , 2014, EMNLP.

[21]  David S. Johnson,et al.  Crossing Number is NP-Complete , 1983 .

[22]  Martha Lewis,et al.  Compositional Hyponymy with Positive Operators , 2019, RANLP.

[23]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[24]  Stefano Gogioso,et al.  A corpus-based toy model for DisCoCat , 2016, SLPCS@QPL.

[25]  Ángel J. Gallego,et al.  Language Design as Information Renormalization , 2017, SN Computer Science.

[26]  Ross Duncan,et al.  t|ket⟩: a retargetable compiler for NISQ devices , 2020, Quantum Science and Technology.

[27]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[28]  Bob Coecke,et al.  Quantum Algorithms for Compositional Natural Language Processing , 2016, SLPCS@QPL.

[29]  Zeph Landau,et al.  Quantum Computation and the Evaluation of Tensor Networks , 2008, SIAM J. Comput..

[30]  Mehrnoosh Sadrzadeh,et al.  Evaluating Composition Models for Verb Phrase Elliptical Sentence Embeddings , 2019, NAACL.

[31]  Jamie Vicary,et al.  Coherence for Frobenius pseudomonoids and the geometry of linear proofs , 2016, Log. Methods Comput. Sci..

[32]  Dimitri Kartsaklis,et al.  A Study of Entanglement in a Categorical Framework of Natural Language , 2014, QPL.

[33]  Antonin Delpeuch Autonomization of Monoidal Categories , 2019, ACT.

[34]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[35]  Wojciech Buszkowski,et al.  Lambek Grammars Based on Pregroups , 2001, LACL.

[36]  Martha Lewis,et al.  Harmonic Grammar in a DisCo Model of Meaning , 2016, ArXiv.

[37]  Jacob biamonte,et al.  Quantum machine learning , 2016, Nature.

[38]  Hans-J. Briegel,et al.  Advances in quantum reinforcement learning , 2017, 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC).