The rheological transition in plagioclase‐bearing magmas

Volcanological processes, such as melt segregation, ascent, and eruption, are directly dependent on the rheological behavior of magmatic suspensions. An increase of the crystal fraction of the suspension leads to the formation of a solid‐particle network, which abruptly increases magma viscosity. The crystal fraction at which this rheological transition occurs depends on parameters such as the strain rate and the size, shape, and sorting of particles. To determine the influence of the crystal shape on the rheological transition, suspensions of plagioclase, a representative anisometric crystal, have been investigated at high temperatures and pressures. Synthetic suspensions with crystal fractions (ϕs) ranging from 0.38 to 0.75 were deformed both in compression and torsion in a Paterson apparatus at 300 MPa, 900°C and 800°C, and for strain rates between 1.0 × 10‐5 and 1.0 × 10‐3 s‐1. All suspensions exhibit a non‐Newtonian shear thinning rheological behavior. The experimental results, coupled with existing data and models at low crystal fractions (ϕs < 0.3), allow several rheological domains to be identified, from steady‐state flow to strain weakening, each characterized by a specific microstructure. In particular, a progressive evolution from a pervasive to a strain partitioning fabric is found when increasing the crystal fraction. Our results highlight the influence of both the strain rate and the shape of crystals on the rheological behavior of magmas. During crystallization, magmatic suspensions of anisometric minerals such as plagioclase would develop a solid‐particle network earlier (ϕs ~ 0.3) than suspensions of isometric minerals (ϕs ~ 0.5). Our study shows that localization of strain early in the crystallization history of mushy zones in the magma chamber, near the conduit margins, and at the base of lava flows would facilitate the mobilization, the transfer, and the final emplacement at the surface of highly viscous, feldspar‐rich magmas.

[1]  P. Barbey lA yering And schlieren in grAniT oids: A record of inTerAcTions beTween mAgmA emplAcemenT , crysTAllizATion And deformATion in growing pluT ons , 2009 .

[2]  Harry Pinkerton,et al.  Methods of determining the rheological properties of magmas at sub-liquidus temperatures. , 1992 .

[3]  Albert Einstein,et al.  Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁ [AdP 34, 591 (1911)] , 2005, Annalen der Physik.

[4]  Tharwat F. Tadros,et al.  Rheology of Concentrated Suspensions , 1990 .

[5]  D. Dingwell,et al.  A rheological investigation of vesicular rhyolite , 1992 .

[6]  M. Pichavant Effects of B and H 2 O on liquidus phase relations in the haplogranite system at l kbar , 1987 .

[7]  G. B. Jeffery The motion of ellipsoidal particles immersed in a viscous fluid , 1922 .

[8]  F. J. Ryerson,et al.  Rheology of subliquidus magmas: 1. Picritic compositions , 1988 .

[9]  John V. Smith Structural analysis of flow-related textures in lavas , 2002 .

[10]  D. Gasquet,et al.  Relative rheological evolution of chemically contrasted coeval magmas: example of the Tichka plutonic complex (Morocco) , 1994 .

[11]  J. H. Kruhl,et al.  Shearing of magma along a high-grade shear zone: Evolution of microstructures during the transition from magmatic to solid-state flow , 2012 .

[12]  Jean-Louis Feybesse,et al.  Theoretical and experimental study of fabrics developed by different shaped markers in two-dimensional simple shear , 1983 .

[13]  N. Bagdassarov,et al.  Granite rheology: magma flow and melt migration , 1998, Journal of the Geological Society.

[14]  M. Mellor,et al.  Uniaxial testing in rock mechanics laboratories , 1970 .

[15]  G. Wadge,et al.  The transition from endogenous to exogenous growth of lava domes with the development of shear bands , 2008 .

[16]  P. Papale,et al.  Novel interpretation for shift between eruptive styles in some volcanoes , 2005 .

[17]  P. Launeau,et al.  Rheology and microstructure of experimentally deformed plagioclase suspensions , 2011 .

[18]  D. Dingwell,et al.  Parametrization of viscosity-temperature relations of aluminosilicate melts , 1996 .

[19]  Jean-Luc Bouchez,et al.  Shear criteria in granite and migmatite deformed in the magmatic and solid states , 1988 .

[20]  D. Dingwell,et al.  Viscosity of magmatic liquids: A model , 2008 .

[21]  P. Richet,et al.  Silicate melts: The “anomalous” pressure dependence of the viscosity , 1995 .

[22]  Hervé Diot,et al.  Analogue 3D Simple-Shear Experiments of Magmatic Biotite Subfabrics , 1997 .

[23]  P. Barbey,et al.  Rheological Transitions During Partial Melting and Crystallization with Application to Felsic Magma Segregation and Transfer , 1996 .

[24]  Hiroaki Sato,et al.  Viscosity measurements of subliquidus magmas: Alkali olivine basalt from the Higashi-Matsuura district, Southwest Japan , 2007 .

[25]  L. Arbaret,et al.  Microstructures and rheology of hydrous synthetic magmatic suspensions deformed in torsion at high pressure , 2007 .

[26]  B. Ildefonse,et al.  Mechanical interactions between rigid particles in a deforming ductile matrix. Analogue experiments in simple shear flow , 1992 .

[27]  A. Burgisser,et al.  Experimental constrains on shear-induced crystal breakage in magmas , 2011 .

[28]  L. Caricchi,et al.  Rheological properties of magma from the 1538 eruption of Monte Nuovo (Phlegrean Fields, Italy): An experimental study , 2008 .

[29]  P. Richet,et al.  Water and the viscosity of andesite melts , 1996 .

[30]  Hervé Diot,et al.  Shape fabrics of particles in low concentration suspensions: 2D analogue experiments and application to tiling in magma , 1996 .

[31]  Mrcnnr,et al.  Effects of B and HrO on liquidus phase relations in the haplogranite system at 1 kbar , 2007 .

[32]  F. Spera,et al.  Rheology and microstructure of magmatic emulsions : theory and experiments , 1992 .

[33]  R. Vernon,et al.  A review of criteria for the identification of magmatic and tectonic foliations in granitoids , 1989 .

[34]  B. A. Chappell Structural response and rock bolting of a rock mass , 1987 .

[35]  P. Launeau,et al.  Effect of mechanical interactions on the development of shape preferred orientations: a two-dimensional experimental approach , 1992 .

[36]  C. Martel Eruption Dynamics Inferred from Microlite Crystallization Experiments: Application to Plinian and Dome-forming Eruptions of Mt. Pelée (Martinique, Lesser Antilles) , 2012 .

[37]  A. Arzi Critical phenomena in the rheology of partially melted rocks , 1978 .

[38]  R. Sparks,et al.  Causes and consequences of pressurisation in lava dome eruptions , 1997 .

[39]  L. Arbaret,et al.  Experimental investigation of magma rheology at 300 MPa: From pure hydrous melt to 76 vol.% of crystals , 2008 .

[40]  B. Mysen Relationships between silicate melt structure and petrologic processes , 1990 .

[41]  K. Hess,et al.  Viscosities of hydrous leucogranitic melts: A non-Arrhenian model , 1996 .

[42]  D. Dingwell,et al.  Rheological properties of dome lavas: Case study of Unzen volcano , 2009 .

[43]  S. Johnson,et al.  Emplacement-related microstructures in the margin of a deformed pluton: the San José tonalite, Baja California, México , 2004 .

[44]  M. Paterson,et al.  Experimental deformation of partially-melted granite , 1979 .

[45]  D. Dingwell,et al.  The effect of water on the viscosity of a haplogranitic melt under P-T-X conditions relevant to silicic volcanism , 1996 .

[46]  M. Paterson,et al.  Rock deformation tests to large shear strains in torsion , 2000 .

[47]  R. Vernon,et al.  How late are K-feldspar megacrysts in granites? , 2008 .

[48]  T. Trull,et al.  Rheology of bubble-bearing magmas , 1999 .

[49]  J. McPhie,et al.  Phenocryst fragments in rhyolitic lavas and lava domes , 2003 .

[50]  M. A. Mamtani,et al.  Magnetic fabric, shape preferred orientation and regional strain in granitic rocks , 2006 .

[51]  Martin O. Saar,et al.  Numerical models of the onset of yield strength in crystal–melt suspensions , 2001 .

[52]  M. Loewenberg,et al.  Rheology of bubble-bearing magmas , 1998 .

[53]  K. Schulmann,et al.  The behaviour of rigid triaxial ellipsoidal particles in viscous flows-modeling of fabric evolution in a multiparticle system , 1994 .

[54]  Hans-Rudolf Wenk,et al.  Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope , 2000 .

[55]  A. Whittington,et al.  Water and magmas: Thermal effects of exsolution , 2006 .

[56]  A. Burgisser,et al.  A rapid mechanism to remobilize and homogenize highly crystalline magma bodies , 2011, Nature.

[57]  Angel Fernandez,et al.  3D Biotite Shape Fabric Experiments under Simple Shear Strain , 1997 .

[58]  P. Papale,et al.  Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics , 2007 .

[59]  John V. Smith Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, eastern Australia , 1996 .

[60]  M. Handy,et al.  Experimental deformation of partially melted granite revisited: implications for the continental crust , 2005 .

[61]  Herbert R. Shaw,et al.  Rheology of Basalt in the Melting Range , 1969 .

[62]  P. Závada,et al.  The mechanism of flow and fabric development in mechanically anisotropic trachyte lava , 2009 .

[63]  Patrick Launeau,et al.  Fabric analysis using the intercept method , 1996 .

[64]  A. Nédélec,et al.  Submagmatic microfractures in granites , 1992 .

[65]  N. Geshi Melt segregation by localized shear deformation and fracturing during crystallization of magma in shallow intrusions of the Otoge volcanic complex, central Japan , 2001 .

[66]  John V. Smith Shear thickening dilatancy in crystal-rich flows , 1997 .

[67]  R. Roscoe The viscosity of suspensions of rigid spheres , 1952 .

[68]  E. W. Llewellin,et al.  The rheology of suspensions of solid particles , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[69]  N. Bagdassarov,et al.  Transient phenomena in vesicular lava flows based on laboratory experiments with analogue materials , 2004 .

[70]  D. Dingwell,et al.  Viscoelasticity of crystal- and bubble-bearing rhyolite melts , 1994 .

[71]  P. Barbey,et al.  The André dumonT medAllisT lecTure lAyering And schlieren in grAniToids : A record of inTerAcTions beTween mAgmA emplAcemenT , crysTAllizATion And deformATion in growing pluTons , 2008 .

[72]  C. Rosenberg Deformation of partially molten granite: a review and comparison of experimental and natural case studies , 2001 .

[73]  R. Weijermars Taylor-mill analogues for patterns of flow and deformation in rocks , 1998 .

[74]  F. Marone,et al.  Deformation experiments of bubble‐ and crystal‐bearing magmas: Rheological and microstructural analysis , 2012 .

[75]  N. Petford Rheology of granitic magmas during ascent and emplacement , 2003 .

[76]  Basil Tikoff,et al.  Strain partitioning during partial melting and crystallizing felsic magmas , 1999 .

[77]  M. Ashby,et al.  Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics , 1982 .

[78]  Paolo Papale,et al.  The compositional dependence of the saturation surface of H2O + CO2 fluids in silicate melts , 2006 .

[79]  H. Ishibashi Non-Newtonian behavior of plagioclase-bearing basaltic magma: Subliquidus viscosity measurement of the 1707 basalt of Fuji volcano, Japan , 2009 .

[80]  P. Richet,et al.  Rheology of crystal-bearing silicate melts : an experimental study at high viscosities , 1995 .

[81]  Nick Petford,et al.  Which effective viscosity? , 2009 .

[82]  Hiroaki Sato Viscosity measurement of subliquidus magmas: 1707 basalt of Fuji volcano , 2005 .

[83]  D. Picard Déformation HP-HT des magmas siliceux : contraintes expérimentales sur l'évolution structurale et les transitions rhéologiques aux moyennes et fortes cristallinités , 2009 .