On-line Ramsey Numbers for Paths and Stars

We study on-line version of size-Ramsey numbers of graphs defined via a game played between Builder and Painter: in one round Builder joins two vertices by an edge and Painter paints it red or blue. The goal of Builder is to force Painter to create a monochromatic copy of a fixed graph H in as few rounds as possible. The minimum number of rounds (assuming both players play perfectly) is the on-line Ramsey number r(H) of the graph H. We determine exact values of r(H) for a few short paths and obtain a general upper bound r(Pn) ≤ 4n −7. We also study asymmetric version of this parameter when one of the target graphs is a star Sn with n edges. We prove that r(Sn, H) ≤ n*e(H) when H is any tree, cycle or clique

[1]  P. Erdos,et al.  The size Ramsey number , 1978 .

[2]  Andrzej Rucinski,et al.  Two variants of the size Ramsey number , 2005, Discuss. Math. Graph Theory.

[3]  Hal A. Kierstead,et al.  Coloring number and on-line Ramsey theory for graphs and hypergraphs , 2009, Comb..

[4]  Oleg Pikhurko,et al.  Size Ramsey Numbers of Stars Versus 3-chromatic Graphs , 2001, Comb..

[5]  P. E. -. R. L. Graham,et al.  ON PARTITION THEOREMS FOR FINITE GRAPHS , 1973 .

[6]  Pawel Pralat R(3, 4)=17 , 2008, Electron. J. Comb..

[7]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[8]  Yoshiharu Kohayakawa,et al.  Ramsey Games Against a One-Armed Bandit , 2003, Comb. Probab. Comput..

[9]  Yoshiharu Kohayakawa,et al.  A note on the Size-Ramsey number of long subdivisions of graphs , 2005, RAIRO Theor. Informatics Appl..

[10]  Oleg Pikhurko,et al.  Size ramsey numbers of stars versus 4‐chromatic graphs , 2003, Journal of Graph Theory.

[11]  József Beck,et al.  On size Ramsey number of paths, trees, and circuits. I , 1983, J. Graph Theory.

[12]  Pawel Pralat A note on small on-line Ramsey numbers for paths and their generalization , 2008, Australas. J Comb..

[13]  Joel Friedman,et al.  Expanding graphs contain all small trees , 1987, Comb..

[14]  Hal A. Kierstead,et al.  On-line Ramsey Theory , 2004, Electron. J. Comb..

[15]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory, Ser. B.

[16]  Oleg Pikhurko Asymptotic Size Ramsey Results for Bipartite Graphs , 2002, SIAM J. Discret. Math..

[17]  Noga Alon,et al.  Explicit construction of linear sized tolerant networks , 1988, Discret. Math..