History of COIL development in Japan: 1982-2002

A twenty-years of COIL researches and developments in Japan are reviewed. The researches of four major sites, namely, Keio University, Industrial Research Institute, Kawasaki Heavy Industries and Tokai University are presented in order of time. Epoch-making works are highlighted, and the significance of those works in the industrial COIL development is discussed, Finally, current status of COIL researches in Japan is introduced.

[1]  Hiroo Fujii,et al.  Development of high‐power chemical oxygen‐iodine laser for industrial application , 1990 .

[2]  Hiroo Fujii,et al.  Current status of industrial COIL development , 1993, Other Conferences.

[3]  T. Fujioka,et al.  High-pressure, high-efficiency operation of a chemical oxygen-iodine laser , 1999 .

[4]  K. Takehisa,et al.  Lasing operation of chemical oxygen-iodine laser without water-vapor trap , 1988 .

[5]  Taro Uchiyama,et al.  Multiguideplate singlet oxygen generator , 2001, International Symposium on High Power Laser Systems and Applications.

[6]  T. Uchiyama,et al.  Intracavity second-harmonic generation of chemical oxygen-iodine laser emission using a LBO crystal , 1995 .

[7]  H. Yamakoshi,et al.  New singlet oxygen generator for chemical oxygen-iodine lasers , 1986 .

[8]  Masamori Endo,et al.  High-efficiency operation of chemical oxygen-iodine laser using nitrogen as buffer gas , 1998 .

[9]  Masamori Endo,et al.  Theoretical study of a large-scale chemically pumped pulsed iodine laser amplifier , 1993, International Symposium on High Power Laser Systems and Applications.

[10]  T. Fujioka,et al.  Output power stabilization of a chemical oxygen-iodine laser with an external magnetic field , 1998 .

[11]  M. Endo,et al.  Performance characteristics of a high‐pressure pulsed singlet oxygen generator , 1992 .

[12]  Hirokazu Yamada,et al.  Three-Dimensional Mixing/Reacting Zone Structure in a Supersonic Flow Chemical Oxygen-Iodine Laser. , 1997 .

[13]  Masamori Endo,et al.  Chemical oxygen-iodine laser for decommissioning and dismantlement of nuclear facilities , 1999 .

[14]  Taro Uchiyama,et al.  A highly efficient, compact chemical oxygen-iodine laser , 1986 .

[15]  Marsel V. Zagidullin,et al.  Buffer gas mixing with active gas on chemical oxygen-iodine laser performance with jet type SOG , 1996, Photonics West.

[16]  Effects of Wall Catalysis on the Reacting Zone Structure of a Supersonic Flow Chemical Oxygen-Iodine Laser. , 1998 .

[17]  David J. Benard,et al.  An electronic transition chemical laser , 1978 .

[18]  Masamori Endo,et al.  Development of a prototype COIL for decommissioning and dismantlement , 2001, International Symposium on High Power Laser Systems and Applications.

[19]  M. Endo,et al.  Chemically pumped O2(a-X) laser , 1993 .

[20]  Characteristics of Radiation from a Q-Switched Supersonic Flow Chemical Oxygen-Iodine Laser , 2000 .

[21]  Shigeru Kashiwabara,et al.  Small-signal gain and saturation parameter of a transverse-flow CW oxygen-iodine laser , 1983 .

[22]  Numerical simulation of a Q-switched operation in a supersonic flow chemical oxygen-iodine laser , 1999 .

[23]  K. Shimizu,et al.  High‐power stable chemical oxygen iodine laser , 1991 .

[24]  H. Fujii,et al.  Chemical oxygen iodine laser of extremely high efficiency , 1989 .

[25]  Hirokazu Yamada,et al.  Effects of Water Vapor Condensation on the Performance of Supersonic Flow Chemical Oxygen-Iodine Laser , 1996 .

[26]  Hiroo Fujii,et al.  Long‐term stability in the operation of a chemical oxygen‐iodine laser for industrial use , 1989 .

[27]  Characteristics of Radiation from a supersonic Flow Chemical Oxygen-Iodine Laser , 1998 .

[28]  Taro Uchiyama,et al.  Magnetic gain switching operation of chemical oxygen-iodine laser , 1993, Other Conferences.

[29]  Masamori Endo,et al.  Parametric study of a mist singlet oxygen generator , 2001, International Symposium on High Power Laser Systems and Applications.

[30]  Hidehiko Miyao,et al.  Underwater cutting of stainless steel with the laser transmitted through optical fiber , 2000, Advanced High-Power Lasers and Applications.

[31]  Mixing and Reacting Zone Structure in a Supersonic Mixing Chemical Oxygen-Iodine Laser with Ramp Nozzle Array , 1999 .

[32]  H. Fujii,et al.  Numerical Simulation of a Supersonic Flow Chemical Oxygen-Iodine Laser Solving Navier-Stokes Equations. , 1997 .

[33]  Taro Uchiyama,et al.  Singlet oxygen generator using a porous pipe , 1987 .

[34]  Taro Uchiyama,et al.  Chemical oxygen-iodine laser using rf-discharge dissociation of I2 , 1998, International Symposium on High Power Laser Systems and Applications.

[35]  Masamori Endo,et al.  Cutting and Drilling of Inorganic Materials for Civil Engineering Using a Chemical Oxygen-Iodine Laser , 2000 .

[36]  Gordon D. Hager,et al.  History of chemical oxygen-iodine laser (COIL) development in the USA , 1994, International Symposium on High Power Laser Systems and Applications.

[37]  S. Rosenwaks,et al.  An efficient, small scale chemical oxygen‐iodine laser , 1982 .

[38]  Masamori Endo,et al.  Output Power Enhancement of a Chemical Oxygen-Iodine Laser by Predissociated Iodine Injection , 2000 .

[39]  Fumio Wani,et al.  INDUSTRIAL COIL IN JAPAN , 1997 .

[40]  S. Kashiwabara,et al.  Performance characteristics of a transverse‐flow, oxygen‐iodine chemical laser in a low gas‐flow velocity , 1983 .

[41]  S. Yoshida,et al.  High power chemical oxygen iodine laser for industrial applications , 1990, SPIE LASE.

[42]  Seiji Abe,et al.  Applying laser technology to decommissioning for nuclear power plant , 2000, Advanced High-Power Lasers and Applications.

[43]  T. Sawano,et al.  Efficient operation of a chemically pumped oxygen iodine laser utilizing dilute hydrogen peroxide , 1987 .