Multiple trajectory search for Large Scale Global Optimization

In this paper, the multiple trajectory search (MTS) is presented for large scale global optimization. The MTS uses multiple agents to search the solution space concurrently. Each agent does an iterated local search using one of three candidate local search methods. By choosing a local search method that best fits the landscape of a solutionpsilas neighborhood, an agent may find its way to a local optimum or the global optimum. We applied the MTS to the seven benchmark problems designed for the CEC 2008 Special Session and Competition on large scale global optimization.

[1]  Petr Posík,et al.  Real-parameter optimization using the mutation step co-evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[2]  Xiaodong Li,et al.  Benchmark Functions for the CEC'2010 Special Session and Competition on Large-Scale , 2009 .

[3]  Ioannis B. Theocharis,et al.  Microgenetic algorithms as generalized hill-climbing operators for GA optimization , 2001, IEEE Trans. Evol. Comput..

[4]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[5]  Marcus Gallagher,et al.  Experimental results for the special session on real-parameter optimization at CEC 2005: a simple, continuous EDA , 2005, 2005 IEEE Congress on Evolutionary Computation.

[6]  Tung-Kuan Liu,et al.  Hybrid Taguchi-genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[7]  Chun Chen,et al.  Multiple trajectory search for multiobjective optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[8]  Saku Kukkonen,et al.  Real-parameter optimization with differential evolution , 2005, 2005 IEEE Congress on Evolutionary Computation.

[9]  Yong Lu,et al.  A robust stochastic genetic algorithm (StGA) for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[10]  Weicai Zhong,et al.  A multiagent genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[11]  Kalyanmoy Deb,et al.  A population-based, steady-state procedure for real-parameter optimization , 2005, 2005 IEEE Congress on Evolutionary Computation.

[12]  Pedro J. Ballester,et al.  Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX , 2005, 2005 IEEE Congress on Evolutionary Computation.