Solvate Structures and Computational/Spectroscopic Characterization of Lithium Difluoro(oxalato)borate (LiDFOB) Electrolytes

Lithium difluoro(oxalato)borate (LiDFOB) is a relatively new salt designed for battery electrolyte usage. Limited information is currently available, however, regarding the ionic interactions of this salt (i.e., solvate formation) when it is dissolved in aprotic solvents. Vibrational spectroscopy is a particularly useful tool for identifying these interactions, but only if the vibrational bands can be correctly linked to specific forms of anion coordination. Single crystal structures of LiDFOB solvates have therefore been used to both explore the DFOB-center dot center dot center dot Li+ cation coordination interactions and serve as unambiguous models for the assignment of the Raman vibrational bands. The solvate crystal structures determined indude (monoglyme)(2):LiDFOB, (1,2-diethoxyethane)(3/2):LiDFOB, (acetonitrile)(3):LiDFOB, (acetonitrile)(1):LiDFOB, (dimethyl carbonate)(3/2):LiDFOB, (succinonitrile)(1):LiDFOB, (adiponitrile)(1):LiDFOB, (PMDETA)(1):LiDFOB, (CRYPT-222)(2/3):LiDFOB, and (propylene carbonate)(1):LiDFOB. DFT calculations have been incorporated to provide additional insight into the origin (i.e., vibrational modes) of the Raman vibrational bands to aid in the interpretation of the experimental analysis.

[1]  V. Aravindan,et al.  Effect of aging on the ionic conductivity of polyvinylidenefluoride–hexafluoropropylene (PVdF–HFP) membrane impregnated with different lithium salts , 2012 .

[2]  Zhixing Wang,et al.  Effect of lithium difluoro(oxalato)borate and heptamethyldisilazane with different concentrations on cycling performance of LiMn2O4 , 2012 .

[3]  Zhen Zhou,et al.  Effect of lithium difluoro(oxalate)borate (LiDFOB) additive on the performance of high-voltage lithium-ion batteries , 2012, Journal of Applied Electrochemistry.

[4]  Jian Li,et al.  Preparation, Thermal Stability and Electrochemical Properties of LiODFB , 2012 .

[5]  Vanchiappan Aravindan,et al.  Lithium-ion conducting electrolyte salts for lithium batteries. , 2011, Chemistry.

[6]  Joshua L. Allen,et al.  Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox) , 2011 .

[7]  Yang-Kook Sun,et al.  Mechanism of capacity fade of MCMB/Li1.1[Ni1/3Mn1/3Co1/3]0.9O2cell at elevated temperature and additives to improve its cycle life , 2011 .

[8]  M. Winter,et al.  Salt Diffusion Coefficients, Concentration Dependence of Cell Potentials,and Transference Numbers of Lithium Difluoromono(oxalato)borate-Based Solutions , 2011 .

[9]  B. Lucht,et al.  Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries , 2011 .

[10]  G. Żukowska,et al.  Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models. , 2011, Physical chemistry chemical physics : PCCP.

[11]  H. Wiemhöfer,et al.  Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study , 2011 .

[12]  Richard A. Lewis,et al.  Stabilizing high-valent metal ions with a ketimide ligand set: synthesis of Mn(N=C(t)Bu2)4. , 2011, Inorganic chemistry.

[13]  Joshua L. Allen,et al.  Lithium difluoro(oxalato)borate tetramethylene sulfone disolvate , 2011, Acta crystallographica. Section E, Structure reports online.

[14]  B. Lucht,et al.  Inorganic additives for passivation of high voltage cathode materials , 2011 .

[15]  M. Winter,et al.  Electrochemical characterization of electrolytes for lithium-ion batteries based on lithium difluoromono(oxalato)borate , 2011 .

[16]  Xinming Shi,et al.  Electrochemical Performance of Lithium Difluoro(Oxalate)Borate Synthesized by a Novel Method , 2011 .

[17]  Zhian Zhang,et al.  LiPF6 and lithium oxalyldifluoroborate blend salts electrolyte for LiFePO4/artificial graphite lithium-ion cells , 2010 .

[18]  Z. Florjańczyk,et al.  Mixture of LiBF4 and lithium difluoro(oxalato)borate for application as a new electrolyte for lithium-ion batteries , 2010 .

[19]  Zhian Zhang,et al.  Lithium oxalyldifluoroborate/carbonate electrolytes for LiFePO4/artificial graphite lithium-ion cells , 2010 .

[20]  Li‐Zhen Fan,et al.  Density functional theory studies on the B-containing lithium salts , 2010 .

[21]  H. Gores,et al.  Effect of Ionic Liquids as Additives on Lithium Electrolytes: Conductivity, Electrochemical Stability, and Aluminum Corrosion† , 2010 .

[22]  Mingbo Fu,et al.  Lithium difluoro(oxalato)borate/ethylene carbonate + propylene carbonate + ethyl(methyl) carbonate electrolyte for LiMn2O4 cathode , 2010 .

[23]  V. Aravindan,et al.  Li+ ion conduction in TiO2 filled polyvinylidenefluoride-co-hexafluoropropylene based novel nanocomposite polymer electrolyte membranes with LiDFOB , 2009 .

[24]  C. Cramer,et al.  Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. , 2009, The journal of physical chemistry. B.

[25]  B. Lucht,et al.  Examining the Solid Electrolyte Interphase on Binder-Free Graphite Electrodes , 2009 .

[26]  Jun Liu,et al.  Lithium Difluoro(oxalato)borate as Additive to Improve the Thermal Stability of Lithiated Graphite , 2009 .

[27]  H. Gores,et al.  Investigation of the Hydrolysis of Lithium Bis[1,2-oxalato(2-)-O,O'] Borate (LiBOB) in Water and Acetonitrile by Conductivity and NMR Measurements in Comparison to Some Other Borates , 2009 .

[28]  Zhian Zhang,et al.  Structure characterization and electrochemical properties of new lithium salt LiODFB for electrolyte of lithium ion batteries , 2008 .

[29]  V. Aravindan,et al.  Lithium difluoro(oxalate)borate‐based novel nanocomposite polymer electrolytes for lithium ion batteries , 2008 .

[30]  Dennis W. Dees,et al.  Effect of electrolyte composition on initial cycling and impedance characteristics of lithium-ion cells , 2008 .

[31]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[32]  B. Lucht,et al.  Investigating the solid electrolyte interphase using binder-free graphite electrodes , 2008 .

[33]  Zonghai Chen,et al.  Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li1.1[Ni1/3Co1/3Mn1/3]0.9O2 Li-ion cells , 2007 .

[34]  V. Aravindan,et al.  A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb2O3 nanoparticles for lithium ion batteries , 2007 .

[35]  K. Amine,et al.  Lithium Difluoro(oxalato)borate as Salt for Lithium-Ion Batteries , 2007 .

[36]  Jun Liu,et al.  Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries , 2007 .

[37]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[38]  P. Johansson,et al.  Vibrational spectroscopy and ab initio studies of lithium bis(oxalato)borate (LiBOB) in different solvents. , 2006, The journal of physical chemistry. A.

[39]  Shengbo Zhang,et al.  An unique lithium salt for the improved electrolyte of Li-ion battery , 2006 .

[40]  W. Henderson,et al.  Crystal Structures of Poly(Ethylene Oxide)3:LiBF4 and (Diglyme)n:LiBF4 (n = 1,2) , 2005 .

[41]  W. Henderson,et al.  Raman study of tetraglyme-LiClO4 solvate structures , 2004 .

[42]  J. Pauls,et al.  Metallat-Ionen [Al(OR)4]— als Chelatliganden für Übergangsmetall-Kationen† , 2004 .

[43]  R. Frech,et al.  Characterization of Crystalline and Solution Phases of Diglyme−LiSbF6 , 2004 .

[44]  W. Henderson,et al.  Raman study of crystalline solvates between glymes CH3(OCH2CH2)nOCH3(n = 1, 2 and 3) and LiClO4 , 2004 .

[45]  W. Henderson,et al.  LiClO4 Electrolyte Solvate Structures , 2004 .

[46]  S. Liddle,et al.  A homologous series of crown-ether-complexed alkali metal amides as discrete ion-pair species: synthesis and structures of [M(12-crown-4)2][PyNPh · PyN(H)Ph] (M=Li, Na and K) , 2003 .

[47]  W. Henderson,et al.  Tetraglyme−Li+ Cation Solvate Structures: Models for Amorphous Concentrated Liquid and Polymer Electrolytes (II) , 2003 .

[48]  H. Raubenheimer,et al.  Lithium [Bis{benzoyl‐W(CO)5}(μ2‐hydrogen)] − A Charge‐Assisted H+‐Bridged Organometallic Complex Prepared by Selective Li+ Ion Replacement , 2003 .

[49]  W. Henderson,et al.  Crystals from concentrated glyme mixtures. The single-crystal structure of LiClO4. , 2003, Inorganic chemistry.

[50]  C. Stern,et al.  Structural comparisons of fast ion conductors consisting of Li[(CF3SO2)2N] complexes with cryptands or crown ether , 2000 .

[51]  K. Babu,et al.  AB INITIO STRUCTURE AND VIBRATIONAL FREQUENCIES OF (CF3SO2)2N-LI+ ION PAIRS , 1999 .

[52]  U. Böhme,et al.  FIRST CRYSTAL STRUCTURE OF A CYCLOHEXASILYL TRANSITION-METAL DERIVATIVE, (DIME)2LI MO(CO)5SI6ME11 (DIME = DIETHYLENE GLYCOL DIMETHYL ETHER) , 1998 .

[53]  Maria Cristina Burla,et al.  SIRPOW.92 – a program for automatic solution of crystal structures by direct methods optimized for powder data , 1994 .

[54]  Maria Cristina Burla,et al.  SIR92 – a program for automatic solution of crystal structures by direct methods , 1994 .

[55]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[56]  Peter S. White,et al.  NRCVAX ― an interactive-program system for structure analysis , 1989 .

[57]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[58]  P. Power,et al.  X-ray crystal structures of the diphenylphosphide and -arsenide anions: use of a crown ether to effect complete metal cation and organometalloid anion separation , 1984 .

[59]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[60]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association II. Acetonitrile-Lithium Salt Mixtures: Highly Dissociated Salts , 2012 .

[61]  Daniel M. Seo,et al.  Electrolyte Solvation and Ionic Association , 2012 .

[62]  B. Lucht,et al.  Performance Enhancing Electrolyte Additives for Lithium Ion Batteries with Silicon Anodes , 2012 .

[63]  B. Lucht,et al.  Investigation of the Disproportionation Reactions and Equilibrium of Lithium Difluoro(Oxalato) Borate (LiDFOB) , 2011 .

[64]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[65]  Shengbo Zhang Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte , 2007 .

[66]  M. Armand,et al.  Spectroscopic and theoretical study of the 1,2,3-Triazole-4,5-dicarbonitrile anion and its lithium ion pairs , 2003 .

[67]  R. Frech,et al.  Molecular structures and normal vibrations of trifluoromethane sulfonate (CF3SO3-) and its lithium ion pairs and aggregates , 1994 .