Recent Advances in Simulation and Optimal Design of Pressure Swing Adsorption Systems

Abstract With the growing maturity and accuracy of bed models for adsorption, increasing sophistication of pressure swing adsorption (PSA) cycles and competitive demands for high‐performance PSA separations, it is essential to develop systematic optimization strategies for the design of PSA systems. Moreover, over the past decade large‐scale simulation and optimization tools have been developed that overcome many of the computational barriers related to process optimization with detailed models. This study discusses recent progress in this area. In particular, we discuss large‐scale simulation and optimization algorithms along with their implementation on PSA systems. A case study on an O2VSA process demonstrates the effectiveness of this approach. Finally, future research directions in algorithmic development, optimal strategies for process control and operation, as well as application to more complex PSA cycles are outlined.

[1]  Narasimhan Sundaram Training neural networks for pressure swing adsorption processes , 1999 .

[2]  Andreas Griewank,et al.  On constrained optimization by adjoint based quasi-Newton methods , 2002, Optim. Methods Softw..

[3]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[4]  D. Ingham,et al.  Numerical Computation of Internal and External Flows. By C. H IRSCH . Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991 .

[5]  Shivaji Sircar,et al.  Parametric Study of a Pressure Swing Adsorption Process , 2000 .

[6]  M. Douglas LeVan,et al.  Periodic states of adsorption cycles. III. Convergence acceleration for direct determination , 2001 .

[7]  James A. Ritter,et al.  Comparison of Finite Difference Techniques for Simulating Pressure Swing Adsorption , 1998 .

[8]  Chang-Ha Lee,et al.  Adsorption dynamics of a layered bed PSA for H2 recovery from coke oven gas , 1998 .

[9]  Christian Bischof,et al.  The ADIFOR 2.0 system for the automatic differentiation of Fortran 77 programs , 1997 .

[10]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[11]  L. Biegler,et al.  A MULTIPLIER-FREE, REDUCED HESSIAN METHOD FOR PROCESS OPTIMIZATION , 1997 .

[12]  L. Petzold,et al.  Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software☆ , 2002 .

[13]  Mark A. Kramer,et al.  Algorithm 658: ODESSA–an ordinary differential equation solver with explicit simultaneous sensitivity analysis , 1988, TOMS.

[14]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[15]  William Gropp,et al.  Skjellum using mpi: portable parallel programming with the message-passing interface , 1994 .

[16]  S. M. Verduyn Lunel,et al.  The efficient computation of periodic states of cyclically operated chemical processes , 2003 .

[17]  M. Douglas LeVan,et al.  Periodic states of adsorption cycles. I: Direct determination and stability , 1994 .

[18]  Jianming He,et al.  Fast solution-adaptive finite volume method for PSA/VSA cycle simulation; 1 single step simulation , 2000 .

[19]  Lorenz T. Biegler,et al.  Simulation and optimal design of multiple‐bed pressure swing adsorption systems , 2004 .

[20]  L. Petzold,et al.  Sensitivity analysis of differential-algebraic equations: A comparison of methods on a special problem ✩ , 2000 .

[21]  Linda R. Petzold,et al.  Parallel sensitivity analysis for DAEs with many parameters , 1999, Concurr. Pract. Exp..

[22]  Michael Zeitz,et al.  Periodic Control of a Pressure Swing Adsorption Plant , 2001 .

[23]  L. Biegler,et al.  Recent improvements to a multiplier-free reduced Hessian successive quadratic programming algorithm , 1998 .

[24]  Gautam M. Shroff,et al.  Stabilization of unstable procedures: the recursive projection method , 1993 .

[25]  E. F. Kaasschieter,et al.  Finite‐difference methods for one‐dimensional hyperbolic conservation laws , 1994 .

[26]  Philip Rabinowitz,et al.  Numerical methods for nonlinear algebraic equations , 1970 .

[27]  William R. Paterson,et al.  Development of novel algorithm features in the modelling of cyclic processes , 2002 .

[28]  R Rajasree,et al.  Simulation based synthesis, design and optimization of pressure swing adsorption (PSA) processes , 2000 .

[29]  Andreas Griewank,et al.  Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation , 2000, TOMS.

[30]  Thomas F. Edgar,et al.  Predictive Dynamic Model of a Small Pressure Swing Adsorption Air Separation Unit , 1999 .

[31]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[32]  I. G. Kevrekidis,et al.  Enabling dynamic process simulators to perform alternative tasks: A time-stepper-based toolkit for computer-aided analysis , 2003 .

[33]  R. T. Yang,et al.  Gas Separation by Adsorption Processes , 1987 .

[34]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[35]  Daeho Ko,et al.  Multiobjective Optimization of Cyclic Adsorption Processes , 2002 .

[36]  Lorenz T. Biegler,et al.  Simulation and optimization of pressure-swing adsorption systems for air separation , 2003 .

[37]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[38]  Lorenz T. Biegler,et al.  Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration , 2003 .

[39]  Atanas Serbezov,et al.  Mathematical modeling of the adsorptive separation of multicomponent gaseous mixtures , 1997 .

[40]  Linda R. Petzold,et al.  Description of DASPKADJOINT: An Adjoint Sensitivity Solver for Difierential-Algebraic Equations , 2001 .

[41]  Jianming He,et al.  Optimization of PSA systems for air separation , 1998 .

[42]  Shengtai Li,et al.  Design of new Daspk for Sensitivity Analysis , 1999 .

[43]  James A. Ritter,et al.  Pressure swing adsorption cycles for improved solvent vapor enrichment , 2000 .

[44]  Douglas M. Ruthven,et al.  Numerical simulation of a fixed‐bed adsorption column by the method of orthogonal collocation , 1983 .

[45]  Shamsuzzaman Farooq,et al.  Study of a six-bed pressure swing adsorption process , 1997 .

[46]  K. S. Knaebel,et al.  Pressure swing adsorption , 1993 .

[47]  Y. C. Chen,et al.  A versatile process simulator for adsorptive separations , 1994 .

[48]  Ignacio E. Grossmann,et al.  A note on approximation techniques used for process optimization , 1985 .

[49]  Motonobu Goto,et al.  Parametric Studies on CO2 Separation and Recovery by a Dual Reflux PSA Process Consisting of Both Rectifying and Stripping Sections , 1995 .

[50]  Arthur W. Westerberg,et al.  The optimal design of pressure swing adsorption systems—II , 1992 .

[51]  L. Petzold,et al.  Numerical methods and software for sensitivity analysis of differential-algebraic systems , 1986 .

[52]  M. Douglas LeVan,et al.  Periodic states of adsorption cycles—II. Solution spaces and multiplicity , 1994 .

[53]  R. LeVeque Numerical methods for conservation laws , 1990 .

[54]  S. Nilchan,et al.  On the Optimisation of Periodic Adsorption Processes , 1998 .

[55]  Terje Hertzberg,et al.  Optimization of PSA systems—studies on cyclic steady state convergence , 1997 .

[56]  Bruce A. Finlayson,et al.  Numerical methods for problems with moving fronts , 1992 .

[57]  Jorge Nocedal,et al.  A Reduced Hessian Method for Large-Scale Constrained Optimization , 1995, SIAM J. Optim..

[58]  Fernão D. Magalhães,et al.  Cyclic adsorption separation processes: analysis strategy and optimization procedure , 2003 .

[59]  W. Schiesser The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .

[60]  Arthur W. Westerberg,et al.  Acceleration of cyclic steady state convergence for pressure swing adsorption models , 1992 .

[61]  Rangan Banerjee,et al.  Exergy analysis of pressure swing adsorption processes for air separation , 1990 .

[62]  M. D. LeVan,et al.  Numerical simulation of diffusion-limited PSA process models by finite difference methods , 1996 .

[63]  Jari Lewandowski,et al.  Use of Neural Networks in the Simulation and Optimization of Pressure Swing Adsorption Processes , 1998 .

[64]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .