Reliable low-power digital signal processing via reduced precision redundancy

In this paper, we present a novel algorithmic noise-tolerance (ANT) technique referred to as reduced precision redundancy (RPR). RPR requires a reduced precision replica whose output can be employed as the corrected output in case the original system computes erroneously. When combined with voltage overscaling (VOS), the resulting soft digital signal processing system achieves up to 60% and 44% energy savings with no loss in the signal-to-noise ratio (SNR) for receive filtering in a QPSK system and the butterfly of fast Fourier transform (FFT) in a WLAN OFDM system, respectively. These energy savings are with respect to optimally scaled (i.e., the supply voltage equals the critical voltage V/sub dd-crit/) present day systems. Further, we show that the RPR technique is able to maintain the output SNR for error rates of up to 0.09/sample and 0.06/sample in an finite impulse response filter and a FFT block, respectively.

[1]  K. Azadet,et al.  A low power 128-tap digital adaptive equalizer for broadband modems , 1997, 1997 IEEE International Solids-State Circuits Conference. Digest of Technical Papers.

[2]  Robert H. Dennard,et al.  CMOS scaling for high performance and low power-the next ten years , 1995, Proc. IEEE.

[3]  Naresh R. Shanbhag,et al.  Soft digital signal processing , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[4]  Bevan M. Baas,et al.  A low-power, high-performance, 1024-point FFT processor , 1999, IEEE J. Solid State Circuits.

[5]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[6]  M. Y. Hong A fast mixed-signal simulation approach and an efficient signal analysis technique with application to continuous-time sigma-delta modulator design , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[7]  Suhwan Kim,et al.  Power-complexity analysis of pipelined VLSI FFT architectures for low energy wireless communication applications , 1999, 42nd Midwest Symposium on Circuits and Systems (Cat. No.99CH36356).

[8]  Farid N. Najm,et al.  A survey of power estimation techniques in VLSI circuits , 1994, IEEE Trans. Very Large Scale Integr. Syst..

[9]  Kenneth L. Shepard,et al.  Noise in deep submicron digital design , 1996, Proceedings of International Conference on Computer Aided Design.

[10]  Anantha P. Chandrakasan,et al.  Minimizing power consumption in digital CMOS circuits , 1995, Proc. IEEE.

[11]  John G. Proakis,et al.  Digital Communications , 1983 .

[12]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[13]  D. J. Skellern,et al.  VLSI for OFDM , 1998 .

[14]  Christer Svensson,et al.  Noise in digital dynamic CMOS circuits , 1994 .

[15]  Massoud Pedram,et al.  Power Aware Design Methodologies , 2002 .

[16]  Naresh R. Shanbhag,et al.  A Mathematical Basis For Power-Reduction In Digital VLSI Systems , 1997 .

[17]  Naresh R. Shanbhag,et al.  Reliable low-power design in the presence of deep submicron noise (embedded tutorial session) , 2000, ISLPED '00.

[18]  Naresh R. Shanbhag,et al.  The twin-transistor noise-tolerant dynamic circuit technique , 2001, IEEE J. Solid State Circuits.

[19]  Naresh R. Shanbhag,et al.  A low-power digital filter IC via soft DSP , 2001, Proceedings of the IEEE 2001 Custom Integrated Circuits Conference (Cat. No.01CH37169).

[20]  Anantha Chandrakasan,et al.  Power scalable processing using distributed arithmetic , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[21]  Massoud Pedram,et al.  Low power design methodologies , 1996 .

[22]  Naresh R. Shanbhag,et al.  Low-power filtering via adaptive error-cancellation , 2003, IEEE Trans. Signal Process..

[23]  P. Hazucha,et al.  Impact of CMOS technology scaling on the atmospheric neutron soft error rate , 2000 .

[24]  Bruce A. Wooley,et al.  A Two's Complement Parallel Array Multiplication Algorithm , 1973, IEEE Transactions on Computers.

[25]  Lorenzo Alvisi,et al.  Modeling the effect of technology trends on the soft error rate of combinational logic , 2002, Proceedings International Conference on Dependable Systems and Networks.

[26]  Naresh R. Shanbhag,et al.  Energy-efficient signal processing via algorithmic noise-tolerance , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[27]  B. M. Gordon,et al.  Supply and threshold voltage scaling for low power CMOS , 1997, IEEE J. Solid State Circuits.

[28]  Larsson,et al.  Self-adjusting Bit-precision For Low-power Digital Filters , 1997, Symposium 1997 on VLSI Circuits.