Correlative iPALM and SEM resolves virus cavity and Gag lattice defects in HIV virions

[1]  L. Looger,et al.  Diverse protocols for correlative super-resolution fluorescence imaging and electron microscopy of chemically fixed samples , 2017, Nature Protocols.

[2]  M. Bendjennat,et al.  The Race against Protease Activation Defines the Role of ESCRTs in HIV Budding , 2016, PLoS pathogens.

[3]  C. Bräuchle,et al.  Super-Resolution Imaging of ESCRT-Proteins at HIV-1 Assembly Sites , 2015, PLoS pathogens.

[4]  Steve Pressé,et al.  Stochastic approach to the molecular counting problem in superresolution microscopy , 2014, Proceedings of the National Academy of Sciences.

[5]  J. Briggs,et al.  Structure of the immature HIV-1 capsid in intact virus particles at 8.8 Å resolution , 2014, Nature.

[6]  Michelle S Itano,et al.  Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding , 2014, Proceedings of the National Academy of Sciences.

[7]  M. Bendjennat,et al.  ALIX Is Recruited Temporarily into HIV-1 Budding Sites at the End of Gag Assembly , 2014, PloS one.

[8]  Prabuddha Sengupta,et al.  Distribution of ESCRT Machinery at HIV Assembly Sites Reveals Virus Scaffolding of ESCRT Subunits , 2014, Science.

[9]  S. Saffarian,et al.  Sample Preparation for Single Virion Atomic Force Microscopy and Super-resolution Fluorescence Imaging , 2014, Journal of visualized experiments : JoVE.

[10]  F. Adler,et al.  Identification of pauses during formation of HIV-1 virus like particles. , 2013, Biophysical journal.

[11]  E. Jorgensen,et al.  Asymmetric Packaging of Polymerases within Vesicular Stomatitis Virus Biochemical and Biophysical Research Communications , 2022 .

[12]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[13]  C. Bräuchle,et al.  Live-cell visualization of dynamics of HIV budding site interactions with an ESCRT component , 2011, Nature Cell Biology.

[14]  P. Bieniasz,et al.  Dynamics of ESCRT protein recruitment during retroviral assembly , 2011, Nature Cell Biology.

[15]  J. Briggs,et al.  Cryo Electron Tomography of Native HIV-1 Budding Sites , 2010, PLoS pathogens.

[16]  Karl Rohr,et al.  Dynamics of HIV-1 Assembly and Release , 2009, PLoS pathogens.

[17]  J. Briggs,et al.  Structure and assembly of immature HIV , 2009, Proceedings of the National Academy of Sciences.

[18]  K. Musier-Forsyth,et al.  Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry. , 2009, Biophysical journal.

[19]  J. Lippincott-Schwartz,et al.  Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure , 2009, Proceedings of the National Academy of Sciences.

[20]  Marc C. Johnson,et al.  Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. , 2008, Cell host & microbe.

[21]  Sanford M. Simon,et al.  Imaging the biogenesis of individual HIV-1 virions in live cells , 2008, Nature.

[22]  S. Hess,et al.  Three-dimensional sub–100 nm resolution fluorescence microscopy of thick samples , 2008, Nature Methods.

[23]  Mark Bates,et al.  Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy , 2008, Science.

[24]  Michael D. Mason,et al.  Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.

[25]  Marko Kaksonen,et al.  PALM reading: Seeing the future of cell biology at higher resolution. , 2006, Developmental cell.

[26]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[27]  Marc C. Johnson,et al.  The stoichiometry of Gag protein in HIV-1 , 2004, Nature Structural &Molecular Biology.

[28]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[29]  S. Hell,et al.  Properties of a 4Pi confocal fluorescence microscope , 1992 .

[30]  E. Jacobs,et al.  Assembly and release of HIV-1 precursor Pr55 gag virus-like particles from recombinant baculovirus-infected insect cells , 1989, Cell.

[31]  W. Webb,et al.  Dynamics of fluorescence marker concentration as a probe of mobility. , 1976, Biophysical journal.

[32]  Alexander Kofman,et al.  HIV-1 gag expression is quantitatively dependent on the ratio of native and optimized codons. , 2003, Tsitologiia.