Advances in 2D Materials for Electronic Devices

[1]  Kazuhito Tsukagoshi,et al.  Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors. , 2016, Chemical Society reviews.

[2]  S. Im,et al.  Reply to "Comment on 'Metal Semiconductor Field-Effect Transistor with MoS₂/Conducting NiOx van der Waals Schottky Interface for Intrinsic High Mobility and Photoswitching Speed'". , 2016, ACS nano.

[3]  Zhirun Hu,et al.  Highly Flexible and Conductive Printed Graphene for Wireless Wearable Communications Applications , 2015, Scientific Reports.

[4]  S. Mahapatra,et al.  Prospects of zero Schottky barrier height in a graphene-inserted MoS2-metal interface , 2015, 1512.03534.

[5]  He Qian,et al.  Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors , 2015, Scientific reports.

[6]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[7]  M. Vaidyanathan,et al.  RF Linearity Performance Potential of Short-Channel Graphene Field-Effect Transistors , 2015, IEEE Transactions on Microwave Theory and Techniques.

[8]  S. Frégonèse,et al.  An Accurate Physics-Based Compact Model for Dual-Gate Bilayer Graphene FETs , 2015, IEEE Transactions on Electron Devices.

[9]  K. Shepard,et al.  Properties of Self-Aligned Short-Channel Graphene Field-Effect Transistors Based on Boron-Nitride-Dielectric Encapsulation and Edge Contacts , 2015, IEEE Transactions on Electron Devices.

[10]  P. Ajayan,et al.  A subthermionic tunnel field-effect transistor with an atomically thin channel , 2015, Nature.

[11]  June Yeong Lim,et al.  Low Power Consumption Complementary Inverters with n-MoS2 and p-WSe2 Dichalcogenide Nanosheets on Glass for Logic and Light-Emitting Diode Circuits. , 2015, ACS applied materials & interfaces.

[12]  Sang A Han,et al.  Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides , 2015, Nano Convergence.

[13]  S. Frégonèse,et al.  Graphene Transistor-Based Active Balun Architectures , 2015, IEEE Transactions on Electron Devices.

[14]  Aaron D. Franklin,et al.  Nanomaterials in transistors: From high-performance to thin-film applications , 2015, Science.

[15]  T. Palacios,et al.  High-Performance WSe2 Complementary Metal Oxide Semiconductor Technology and Integrated Circuits. , 2015, Nano letters.

[16]  S. Banerjee,et al.  Radio Frequency Transistors and Circuits Based on CVD MoS2. , 2015, Nano letters.

[17]  H. Choi,et al.  Band-gap opening in graphene: A reverse-engineering approach , 2015 .

[18]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[19]  Seok-Gwang Doo,et al.  Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density , 2015, Nature Communications.

[20]  Sascha Vongehr,et al.  The Missing Memristor has Not been Found , 2015, Scientific Reports.

[21]  Frank Schwierz,et al.  Graphene and beyond: two-dimensional materials for transistor applications , 2015, Defense + Security Symposium.

[22]  D. Akinwande,et al.  All-Graphene Three-Terminal-Junction Field-Effect Devices as Rectifiers and Inverters. , 2015, ACS nano.

[23]  Masaki Nakano,et al.  Memristive phase switching in two-dimensional 1T-TaS2 crystals , 2015, Science Advances.

[24]  F Schwierz,et al.  Two-dimensional materials and their prospects in transistor electronics. , 2015, Nanoscale.

[25]  Pinshane Y. Huang,et al.  High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity , 2015, Nature.

[26]  C. Rao,et al.  Comparative Study of Potential Applications of Graphene, MoS2, and Other Two-Dimensional Materials in Energy Devices, Sensors, and Related Areas. , 2015, ACS applied materials & interfaces.

[27]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[28]  F. Xia,et al.  The renaissance of black phosphorus , 2015, Proceedings of the National Academy of Sciences.

[29]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[30]  D. Akinwande,et al.  Flexible black phosphorus ambipolar transistors, circuits and AM demodulator. , 2015, Nano letters.

[31]  Madan Dubey,et al.  Silicene field-effect transistors operating at room temperature. , 2015, Nature nanotechnology.

[32]  M. Dubey,et al.  Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene , 2015, Nanotechnology.

[33]  A. Bessonov,et al.  Layered memristive and memcapacitive switches for printable electronics. , 2015, Nature materials.

[34]  Jing Guo,et al.  Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. , 2015, ACS nano.

[35]  D. Jena,et al.  Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors , 2015, 1503.03015.

[36]  R. Ruoff,et al.  Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage , 2015, Science.

[37]  A Gholinia,et al.  Light-emitting diodes by band-structure engineering in van der Waals heterostructures. , 2014, Nature materials.

[38]  Li Tao,et al.  Toward air-stable multilayer phosphorene thin-films and transistors , 2014, Scientific Reports.

[39]  Yida Li,et al.  Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. , 2015, ACS nano.

[40]  K. Shepard,et al.  Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics , 2015, IEEE Journal of the Electron Devices Society.

[41]  H. Happy,et al.  Source-Pull and Load-Pull Characterization of Graphene FET , 2015, IEEE Journal of the Electron Devices Society.

[42]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[43]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[44]  Marcel Demarteau,et al.  Ambipolar phosphorene field effect transistor. , 2014, ACS nano.

[45]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[46]  Hao Wu,et al.  Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics , 2014, Nature Communications.

[47]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[48]  Y. Leblebici,et al.  MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.

[49]  Madan Dubey,et al.  High gain, low noise, fully complementary logic inverter based on bi-layer WSe2 field effect transistors , 2014 .

[50]  P. Miró,et al.  An atlas of two-dimensional materials. , 2014, Chemical Society reviews.

[51]  Zezhao He,et al.  An ultra clean self-aligned process for high maximum oscillation frequency graphene transistors , 2014 .

[52]  Phaedon Avouris,et al.  An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors , 2014, IEEE Transactions on Nanotechnology.

[53]  S. Hsu,et al.  Gigahertz flexible graphene transistors for microwave integrated circuits. , 2014, ACS nano.

[54]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[55]  Zezhao He,et al.  Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates , 2014 .

[56]  Electrostatically doped WSe2 CMOS inverter , 2014, 72nd Device Research Conference.

[57]  D. Jiménez,et al.  An Accurate and Verilog-A Compatible Compact Model for Graphene Field-Effect Transistors , 2014, IEEE Transactions on Nanotechnology.

[58]  B. Al-Hashimi,et al.  Multilayer Graphene FET Compact Circuit-Level Model With Temperature Effects , 2014, IEEE Transactions on Nanotechnology.

[59]  Kazuhito Tsukagoshi,et al.  Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits , 2014, Advanced materials.

[60]  Byung-Sung Kim,et al.  Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium , 2014, Science.

[61]  Yuping Zeng,et al.  High-gain inverters based on WSe2 complementary field-effect transistors. , 2014, ACS nano.

[62]  R. Wallace,et al.  The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. , 2014, Nano letters.

[63]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[64]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[65]  Yanrong Li,et al.  Two-dimensional semiconductors with possible high room temperature mobility , 2014, Nano Research.

[66]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[67]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[68]  Ali Javey,et al.  MoS₂ P-type transistors and diodes enabled by high work function MoOx contacts. , 2014, Nano letters.

[69]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[70]  Eugenie Samuel Reich,et al.  Phosphorene excites materials scientists , 2014, Nature.

[71]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[72]  Alberto Valdes Garcia,et al.  Graphene radio frequency receiver integrated circuit , 2014, Nature Communications.

[73]  Chris Hobbs,et al.  Benchmarking Transition Metal Dichalcogenide MOSFET in the Ultimate Physical Scaling Limit , 2014, IEEE Electron Device Letters.

[74]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[75]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[76]  H. Gong,et al.  Low-contact-resistance graphene devices with nickel-etched-graphene contacts. , 2013, ACS nano.

[77]  Yuchen Du,et al.  MoS2 Field-Effec t Transistors With Graphene/ Metal Heterocontacts , 2014 .

[78]  T. O’Regan,et al.  Analysis of temperature dependent hysteresis in MoS2 field effect transistors for high frequency applications , 2014 .

[79]  Lin-wang Wang,et al.  Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures. , 2013, Nano letters.

[80]  Daniel Schall,et al.  Integrated Ring Oscillators based on high-performance Graphene Inverters , 2013, Scientific Reports.

[81]  Jongho Lee,et al.  25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets. , 2013, ACS Nano.

[82]  C. Nebel,et al.  Valleytronics: Electrons dance in diamond. , 2013, Nature materials.

[83]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[84]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[85]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[86]  E. Pop,et al.  Gigahertz integrated graphene ring oscillators. , 2013, ACS nano.

[87]  Frank Schwierz,et al.  Graphene Transistors: Status, Prospects, and Problems , 2013, Proceedings of the IEEE.

[88]  Madan Dubey,et al.  Large-Area 2-D Electronics: Materials, Technology, and Devices , 2013, Proceedings of the IEEE.

[89]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[90]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[91]  R. Dong,et al.  Record maximum oscillation frequency in C-face epitaxial graphene transistors. , 2013, Nano letters.

[92]  B. Radisavljevic,et al.  Mobility engineering and a metal-insulator transition in monolayer MoS₂. , 2013, Nature materials.

[93]  B. Radisavljevic,et al.  Reply to 'Measurement of mobility in dual-gated MoS₂ transistors'. , 2013, Nature nanotechnology.

[94]  M. Fuhrer,et al.  Measurement of mobility in dual-gated MoS₂ transistors. , 2013, Nature nanotechnology.

[95]  J. Appenzeller,et al.  High performance multilayer MoS2 transistors with scandium contacts. , 2013, Nano letters.

[96]  J. Stake,et al.  A 30-GHz Integrated Subharmonic Mixer Based on a Multichannel Graphene FET , 2013, IEEE Transactions on Microwave Theory and Techniques.

[97]  Yu Huang,et al.  Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters , 2012, Nature materials.

[98]  B. Jonker,et al.  Valley polarization and intervalley scattering in monolayer MoS$_{2}$ , 2012 .

[99]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[100]  Kamran Behnia,et al.  Condensed-matter physics: Polarized light boosts valleytronics. , 2012, Nature nanotechnology.

[101]  Branimir Radisavljevic,et al.  Small-signal amplifier based on single-layer MoS2 , 2012 .

[102]  Eric Pop,et al.  Cascading wafer-scale integrated graphene complementary inverters under ambient conditions. , 2012, Nano letters.

[103]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[104]  X. Duan,et al.  Scalable fabrication of self-aligned graphene transistors and circuits on glass. , 2012, Nano letters.

[105]  Ji Feng,et al.  Valley-selective circular dichroism of monolayer molybdenum disulphide , 2012, Nature Communications.

[106]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[107]  Carl W. Magnuson,et al.  Reducing extrinsic performance-limiting factors in graphene grown by chemical vapor deposition. , 2012, ACS nano.

[108]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[109]  Laura Polloni,et al.  Graphene audio voltage amplifier. , 2012, Small.

[110]  S. Rodriguez,et al.  RF performance projections of graphene FETs vs. silicon MOSFETs , 2011, 1110.0978.

[111]  A. Seitsonen,et al.  A review on silicene - New candidate for electronics , 2012 .

[112]  Han Wang,et al.  Graphene electronics for RF applications , 2012, 2011 IEEE MTT-S International Microwave Symposium.

[113]  Keith A. Jenkins,et al.  High-frequency performance of graphene field effect transistors with saturating IV-characteristics , 2011, 2011 International Electron Devices Meeting.

[114]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[115]  W. Haensch,et al.  High-frequency graphene voltage amplifier. , 2011, Nano letters.

[116]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[117]  Martin Stutzmann,et al.  High-transconductance graphene solution-gated field effect transistors , 2011, 1105.6332.

[118]  Lianmao Peng,et al.  Top-gated graphene field-effect transistors with high normalized transconductance and designable dirac point voltage. , 2011, ACS Nano.

[119]  P. Avouris,et al.  Ultimate RF Performance Potential of Carbon Electronics , 2011, IEEE Transactions on Microwave Theory and Techniques.

[120]  K. Tsukagoshi,et al.  Complementary-like graphene logic gates controlled by electrostatic doping. , 2011, Small.

[121]  Cédric Majek,et al.  Electrical compact modelling of graphene transistors , 2011 .

[122]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[123]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[124]  Hanna Enriquez,et al.  Epitaxial growth of a silicene sheet , 2010, 1204.0523.

[125]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[126]  Kazuhito Tsukagoshi,et al.  Low operating bias and matched input-output characteristics in graphene logic inverters. , 2010, Nano letters.

[127]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[128]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[129]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[130]  M. E. Dávila,et al.  Physics and chemistry of silicene nano-ribbons , 2009 .

[131]  Jr.,et al.  Hall effect mobility of epitaxial graphene grown on silicon carbide , 2009, 0907.5026.

[132]  S. Banerjee,et al.  Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils , 2009, Science.

[133]  Valeria Russo,et al.  Integrated complementary graphene inverter , 2009, 0904.2745.

[134]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[135]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[136]  G. Fudenberg,et al.  Ultrahigh electron mobility in suspended graphene , 2008, 0802.2389.

[137]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[138]  M. Ieong,et al.  Silicon Device Scaling to the Sub-10-nm Regime , 2004, Science.

[139]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[140]  S. Iijima,et al.  Direct evidence for atomic defects in graphene layers , 2004, Nature.

[141]  S. Takagi,et al.  Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors , 2003 .

[142]  M. Lundstrom,et al.  Does source-to-drain tunneling limit the ultimate scaling of MOSFETs? , 2002, Digest. International Electron Devices Meeting,.

[143]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[144]  D. Schroder Semiconductor Material and Device Characterization , 1990 .

[145]  Gold Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. , 1987, Physical review. B, Condensed matter.

[146]  K. Kam Electrical properties of WSe2, WS2, MoSe2, MoS2, and their use as photoanodes in a semiconductor liquid junction solar cell , 1982 .

[147]  L. Chua Memristor-The missing circuit element , 1971 .