CONFIGURATION AND SPECIFICATIONS OF AN UNMANNED AERIAL VEHICLE FOR PRECISION AGRICULTURE

Abstract. Unmanned Aerial Vehicles (UAVs) with multispectral sensors are increasingly attractive in geosciences for data capture and map updating at high spatial and temporal resolutions. These autonomously-flying systems can be equipped with different sensors, such as a six-band multispectral camera (Tetracam mini-MCA-6), GPS Ublox M8N, and MEMS gyroscopes, and miniaturized sensor systems for navigation, positioning, and mapping purposes. These systems can be used for data collection in precision viticulture. In this study, the efficiency of a light UAV system for data collection, processing, and map updating in small areas is evaluated, generating correlations between classification maps derived from remote sensing and production maps. Based on the comparison of the indices derived from UAVs incorporating infrared sensors with those obtained by satellites (Sentinel 2A and Landsat 8), UAVs show promise for the characterization of vineyard plots with high spatial variability, despite the low vegetative coverage of these crops. Consequently, a procedure for zoning map production based on UAV/UV images could provide important information for farmers.

[1]  Alessandro Matese,et al.  Technology in precision viticulture: a state of the art review , 2015 .

[2]  Piero Toscano,et al.  Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..

[3]  P. Zarco-Tejada,et al.  Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle , 2014, Precision Agriculture.

[4]  J. Ríos El uso de la teledetección de alta resolución como herramienta para realizar un manejo eficiente del riego en viñedos , 2014 .

[5]  F. López-Granados,et al.  Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management , 2013, PloS one.

[6]  Alessandro Matese,et al.  DEVELOPMENT AND APPLICATION OF AN AUTONOMOUS AND FLEXIBLE UNMANNED AERIAL VEHICLE FOR PRECISION VITICULTURE , 2013 .

[7]  Hakik Paci,et al.  Processing of satellite images in space-time domain , 2010, Earth Sci. Informatics.

[8]  Pablo J. Zarco-Tejada,et al.  Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery , 2010 .

[9]  B. Markham,et al.  Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .

[10]  J. Satorra Una investigación sobre la variabilidad intraparce-laria en viña y el uso de sensores láser en viticultura de precisión , 2008 .

[11]  Bunkei Matsushita,et al.  Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest , 2007, Sensors.

[12]  Pablo J. Zarco-Tejada,et al.  Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale , 2005 .

[13]  T. Winkel,et al.  The Photochemical Reflectance Index (PRI) as a water-stress index , 2002 .

[14]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[15]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[16]  S. Idso,et al.  Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .

[17]  J. A. Schell,et al.  Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .

[18]  S. F. Di Gennaro,et al.  Development of an integrated , low-cost and open-source system for precision viticulture : from UAV to WSN , 2013 .

[19]  A. Ariza,et al.  Descripción y corrección de productos landsat 8 LDCM , 2013 .

[20]  H. Reuter,et al.  Chapter 27 Applications in Precision Agriculture , 2009 .

[21]  P. Zarco-Tejada,et al.  REMOTE SENSING OF VEGETATION FROM UAV PLATFORMS USING LIGHTWEIGHT MULTISPECTRAL AND THERMAL IMAGING SENSORS , 2009 .

[22]  Stephan Nebiker,et al.  A LIGHT-WEIGHT MULTISPECTRAL SENSOR FOR MICRO UAV – OPPORTUNITIES FOR VERY HIGH RESOLUTION AIRBORNE REMOTE SENSING , 2008 .

[23]  F. J. Pierce,et al.  ASPECTS OF PRECISION AGRICULTURE , 1999 .

[24]  C. B. Tanner Plant Temperatures 1 , 1963 .