CONFIGURATION AND SPECIFICATIONS OF AN UNMANNED AERIAL VEHICLE FOR PRECISION AGRICULTURE
暂无分享,去创建一个
Luis A. Ruiz | J. Alvarez | Manuel Erena | Lara Fernández | L. Ruiz | M. Erena | L. Fernández | Salomón Montesinos | D. Portillo | C. Marin | J. M. Henarejos | J. Alvarez | D. Portillo | S. Montesinos | C. Marin
[1] Alessandro Matese,et al. Technology in precision viticulture: a state of the art review , 2015 .
[2] Piero Toscano,et al. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture , 2015, Remote. Sens..
[3] P. Zarco-Tejada,et al. Mapping crop water stress index in a ‘Pinot-noir’ vineyard: comparing ground measurements with thermal remote sensing imagery from an unmanned aerial vehicle , 2014, Precision Agriculture.
[4] J. Ríos. El uso de la teledetección de alta resolución como herramienta para realizar un manejo eficiente del riego en viñedos , 2014 .
[5] F. López-Granados,et al. Configuration and Specifications of an Unmanned Aerial Vehicle (UAV) for Early Site Specific Weed Management , 2013, PloS one.
[6] Alessandro Matese,et al. DEVELOPMENT AND APPLICATION OF AN AUTONOMOUS AND FLEXIBLE UNMANNED AERIAL VEHICLE FOR PRECISION VITICULTURE , 2013 .
[7] Hakik Paci,et al. Processing of satellite images in space-time domain , 2010, Earth Sci. Informatics.
[8] Pablo J. Zarco-Tejada,et al. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery , 2010 .
[9] B. Markham,et al. Summary of Current Radiometric Calibration Coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI Sensors , 2009 .
[10] J. Satorra. Una investigación sobre la variabilidad intraparce-laria en viña y el uso de sensores láser en viticultura de precisión , 2008 .
[11] Bunkei Matsushita,et al. Sensitivity of the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) to Topographic Effects: A Case Study in High-Density Cypress Forest , 2007, Sensors.
[12] Pablo J. Zarco-Tejada,et al. Simple reflectance indices track heat and water stress-induced changes in steady-state chlorophyll fluorescence at the canopy scale , 2005 .
[13] T. Winkel,et al. The Photochemical Reflectance Index (PRI) as a water-stress index , 2002 .
[14] C. Field,et al. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .
[15] A. Huete. A soil-adjusted vegetation index (SAVI) , 1988 .
[16] S. Idso,et al. Wheat canopy temperature: A practical tool for evaluating water requirements , 1977 .
[17] J. A. Schell,et al. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. [Great Plains Corridor] , 1973 .
[18] S. F. Di Gennaro,et al. Development of an integrated , low-cost and open-source system for precision viticulture : from UAV to WSN , 2013 .
[19] A. Ariza,et al. Descripción y corrección de productos landsat 8 LDCM , 2013 .
[20] H. Reuter,et al. Chapter 27 Applications in Precision Agriculture , 2009 .
[21] P. Zarco-Tejada,et al. REMOTE SENSING OF VEGETATION FROM UAV PLATFORMS USING LIGHTWEIGHT MULTISPECTRAL AND THERMAL IMAGING SENSORS , 2009 .
[22] Stephan Nebiker,et al. A LIGHT-WEIGHT MULTISPECTRAL SENSOR FOR MICRO UAV – OPPORTUNITIES FOR VERY HIGH RESOLUTION AIRBORNE REMOTE SENSING , 2008 .
[23] F. J. Pierce,et al. ASPECTS OF PRECISION AGRICULTURE , 1999 .
[24] C. B. Tanner. Plant Temperatures 1 , 1963 .