H-NS forms a superhelical protein scaffold for DNA condensation

The histone-like nucleoid structuring (H-NS) protein plays a fundamental role in DNA condensation and is a key regulator of enterobacterial gene expression in response to changes in osmolarity, pH, and temperature. The protein is capable of high-order self-association via interactions of its oligomerization domain. Using crystallography, we have solved the structure of this complete domain in an oligomerized state. The observed superhelical structure establishes a mechanism for the self-association of H-NS via both an N-terminal antiparallel coiled-coil and a second, hitherto unidentified, helix-turn-helix dimerization interface at the C-terminal end of the oligomerization domain. The helical scaffold suggests the formation of a H-NS:plectonemic DNA nucleoprotein complex that is capable of explaining published biophysical and functional data, and establishes a unifying structural basis for coordinating the DNA packaging and transcription repression functions of H-NS.

[1]  R. Wagner,et al.  Toward the three-dimensional structure of the Escherichia coli DNA-binding protein H-NS: A CD and fluorescence study. , 2001, Biochemical and biophysical research communications.

[2]  T. Mizuno,et al.  Purification of H-NS protein and its regulatory effect on transcription in vitro. , 1996, Methods in enzymology.

[3]  C. Gualerzi,et al.  Thermoregulation of Shigella and Escherichia coli EIEC pathogenicity. A temperature‐dependent structural transition of DNA modulates accessibility of virF promoter to transcriptional repressor H‐NS , 1998, The EMBO journal.

[4]  C. Higgins,et al.  In vivo supercoiling of plasmid and chromosomal DNA in an Escherichia coli hns mutant , 1997, Journal of bacteriology.

[5]  Tjelvar S. G. Olsson,et al.  H-NS is a part of a thermally controlled mechanism for bacterial gene regulation. , 2005, The Biochemical journal.

[6]  C. Higgins,et al.  Structural characterization of the N-terminal oligomerization domain of the bacterial chromatin-structuring protein, H-NS. , 2001, Journal of molecular biology.

[7]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[8]  C. Higgins,et al.  H-NS oligomerization domain structure reveals the mechanism for high order self-association of the intact protein. , 2002, Journal of molecular biology.

[9]  J. Puente,et al.  Thermosensing Coordinates a Cis-regulatory Module for Transcriptional Activation of the Intracellular Virulence System in Salmonella enterica Serovar Typhimurium* , 2007, Journal of Biological Chemistry.

[10]  Maxim V. Petoukhov,et al.  ATSAS 2.1, a program package for small‐angle scattering data analysis , 2006 .

[11]  M. Buckle,et al.  H-NS cooperative binding to high-affinity sites in a regulatory element results in transcriptional silencing , 2007, Nature Structural &Molecular Biology.

[12]  C. Higgins,et al.  Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria , 1990, Cell.

[13]  T. Yamazaki,et al.  Identification of the DNA binding surface of H‐NS protein from Escherichia coli by heteronuclear NMR spectroscopy , 1999, FEBS letters.

[14]  C. Dorman,et al.  Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. , 1999, Trends in microbiology.

[15]  M. Cusick,et al.  Domain structure and RNA annealing activity of the Escherichia coli regulatory protein StpA , 1998, Molecular microbiology.

[16]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[17]  R. Wagner,et al.  Evidence for a regulatory function of the histone‐like Escherichia coli protein H‐NS in ribosomal RNA synthesis , 1994, Molecular microbiology.

[18]  M. Mukerji,et al.  Characterization of the negative elements involved in silencing the bgl operon of Escherichia coli: possible roles for DNA gyrase, H‐NS, and CRP–cAMP in regulation , 1997, Molecular microbiology.

[19]  Malcolm Buckle,et al.  A molecular mechanism for the repression of transcription by the H‐NS protein , 2001, Molecular microbiology.

[20]  C. Higgins,et al.  Oligomerization of the chromatin‐structuring protein H‐NS , 2000, Molecular microbiology.

[21]  Martijn S. Luijsterburg,et al.  DNA Bridging: a Property Shared among H-NS-Like Proteins , 2005, Journal of bacteriology.

[22]  Jack Snoeyink,et al.  Nucleic Acids Research Advance Access published April 22, 2007 MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007 .

[23]  Andrej Sali,et al.  FoXS: a web server for rapid computation and fitting of SAXS profiles , 2010, Nucleic Acids Res..

[24]  A. Travers,et al.  An architectural role of the Escherichia coli chromatin protein FIS in organising DNA. , 2001, Nucleic acids research.

[25]  R. Wagner,et al.  Structural Basis for H-NS-mediated Trapping of RNA Polymerase in the Open Initiation Complex at the rrnB P1* , 2002, The Journal of Biological Chemistry.

[26]  Martyn D Winn,et al.  Macromolecular TLS refinement in REFMAC at moderate resolutions. , 2003, Methods in enzymology.

[27]  Marcel Geertz,et al.  Homeostatic regulation of supercoiling sensitivity coordinates transcription of the bacterial genome , 2006, EMBO reports.

[28]  Antoine Danchin,et al.  Large‐scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid‐associated protein, H‐NS , 2001, Molecular microbiology.

[29]  P. Bertin,et al.  Crystal structure of the N-terminal dimerisation domain of VicH, the H-NS-like protein of Vibrio cholerae. , 2003, Journal of molecular biology.

[30]  Fei Long,et al.  BALBES: a molecular-replacement pipeline , 2007, Acta crystallographica. Section D, Biological crystallography.

[31]  Paul A. Wiggins,et al.  Protein-mediated molecular bridging: a key mechanism in biopolymer organization. , 2009, Biophysical journal.

[32]  G. M. Donato,et al.  Phenotypic Analysis of Random hnsMutations Differentiate DNA-Binding Activity from Properties offimA Promoter Inversion Modulation and Bacterial Motility , 1999, Journal of bacteriology.

[33]  G. Parkinson,et al.  The absence of inorganic salt is required for the crystallization of the complete oligomerization domain of Salmonella typhimurium histone-like nucleoid-structuring protein. , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[34]  J. Wang,et al.  Silencing of the Escherichia coli bgl promoter: effects of template supercoiling and cell extracts on promoter activity in vitro. , 1996, Nucleic acids research.

[35]  J. Ladbury,et al.  Investigation of the self‐association and hetero‐association interactions of H‐NS and StpA from Enterobacteria , 2009, Molecular microbiology.

[36]  S. Rimsky Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. , 2004, Current opinion in microbiology.

[37]  G. Micheli,et al.  A role for H-NS in the regulation of the virF gene of Shigella and enteroinvasive Escherichia coli. , 1998, Research in microbiology.

[38]  E. Margeat,et al.  The H-NS dimerization domain defines a new fold contributing to DNA recognition , 2003, Nature Structural Biology.

[39]  C. Dorman H-NS: a universal regulator for a dynamic genome , 2004, Nature Reviews Microbiology.

[40]  Karsten Suhre,et al.  ElNémo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement , 2004, Nucleic Acids Res..

[41]  H. Buc,et al.  The Degree of Oligomerization of the H-NS Nucleoid Structuring Protein Is Related to Specific Binding to DNA* , 2002, The Journal of Biological Chemistry.

[42]  Roee Amit,et al.  Increased bending rigidity of single DNA molecules by H-NS, a temperature and osmolarity sensor. , 2003, Biophysical journal.

[43]  T. Mizuno,et al.  Solution structure of the DNA binding domain of a nucleoid‐associated protein, H‐NS, from Escherichia coli , 1995, FEBS letters.

[44]  Thomas K. Wood,et al.  Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H‐NS of Escherichia coli , 2010, Microbial biotechnology.