Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes

The authors demonstrate that the compositional sensitivity of an atomic force microscope is enhanced by the simultaneous excitation of its first two flexural eigenmodes. The coupling of those modes by the nonlinear probe-surface interactions enables to map compositional changes in several conjugated molecular materials with a phase shift sensitivity that is about one order of magnitude higher than the one achieved in amplitude modulation atomic force microscopy.

[1]  J. Israelachvili Intermolecular and surface forces , 1985 .

[2]  Olav Solgaard,et al.  High-resolution imaging of elastic properties using harmonic cantilevers , 2004 .

[3]  C. Rovira,et al.  Tetrathiafulvalene derivatives for organic field effect transistors , 2006 .

[4]  Tomasz Kowalewski,et al.  Scanning probe acceleration microscopy (SPAM) in fluids: mapping mechanical properties of surfaces at the nanoscale. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  Ricardo Garcia,et al.  Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever , 2004 .

[6]  Ricardo Garcia,et al.  Unifying theory of tapping-mode atomic-force microscopy , 2002 .

[7]  Ricardo Garcia,et al.  Measuring phase shifts and energy dissipation with amplitude modulation atomic force microscopy , 2006, Nanotechnology.

[8]  Stephen W. Howell,et al.  Nonlinear dynamics of microcantilevers in tapping mode atomic force microscopy: A comparison between theory and experiment , 2002 .

[9]  Ricardo Garcia,et al.  Tip motion in amplitude modulation (tapping-mode) atomic-force microscopy: Comparison between continuous and point-mass models , 2002 .

[10]  Robert W. Stark,et al.  Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy , 2000 .

[11]  J. Aimé,et al.  Experimental determination of conservative and dissipative parts in the tapping mode on a grafted layer: comparison with frequency modulation data , 2005 .

[12]  Arvind Raman,et al.  Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy , 2005 .

[13]  G. Reiter,et al.  Direct visualization of random crystallization and melting in arrays of nanometer-size polymer crystals. , 2001, Physical review letters.

[14]  C. Lieber,et al.  Ultra-sensitive imaging and interfacial analysis of patterned hydrophilic SAM surfaces using energy dissipation chemical force microscopy. , 2005, Journal of the American Chemical Society.

[15]  Ricardo Garcia,et al.  Phase contrast and surface energy hysteresis in tapping mode scanning force microsopy , 1999 .

[16]  D. Sasaki,et al.  Material anisotropy revealed by phase contrast in intermittent contact atomic force microscopy. , 2002, Physical review letters.

[17]  Robert W. Stark,et al.  Higher harmonics imaging in tapping-mode atomic-force microscopy , 2003 .

[18]  Á. S. Paulo,et al.  High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. , 2000, Biophysical journal.

[19]  R. Magerle,et al.  Three‐Dimensional Imaging of Semicrystalline Polypropylene with 10 nm Resolution , 2005 .

[20]  Olav Solgaard,et al.  Resonant harmonic response in tapping-mode atomic force microscopy , 2004 .

[21]  Abdullah Atalar,et al.  Enhanced higher-harmonic imaging in tapping-mode atomic force microscopy , 2005 .

[22]  D. Müller,et al.  From images to interactions: high-resolution phase imaging in tapping-mode atomic force microscopy. , 2001, Biophysical journal.

[23]  K. Matyjaszewski,et al.  Monitoring surface thermal transitions of ABA triblock copolymers with crystalline segments using phase contrast tapping mode atomic force microscopy. , 2005, Langmuir : the ACS journal of surfaces and colloids.