Modular Complexity of Area V2 in the Macaque Monkey

5.

[1]  J. Maunsell,et al.  Visual effects of lesions of cortical area V2 in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[2]  Li Min Chen,et al.  IMAGING IN , 2022 .

[3]  M. Wong-Riley Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry , 1979, Brain Research.

[4]  V. Casagrande,et al.  The distribution of NADPH diaphorase and nitric oxide synthetase (NOS) in relation to the functional compartments of areas V1 and V2 of primate visual cortex. , 2000, Cerebral cortex.

[5]  J. B. Levitt,et al.  Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams , 1994, The Journal of comparative neurology.

[6]  J. Olavarria,et al.  The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. , 1997, Cerebral cortex.

[7]  M. Silverman,et al.  Functional organization of the second cortical visual area in primates. , 1983, Science.

[8]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[9]  D. Ts'o,et al.  The organization of chromatic and spatial interactions in the primate striate cortex , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  A. Parker,et al.  Binocular Neurons in V1 of Awake Monkeys Are Selective for Absolute, Not Relative, Disparity , 1999, The Journal of Neuroscience.

[11]  J. B. Levitt,et al.  Connections between the pulvinar complex and cytochrome oxidase-defined compartments in visual area V2 of macaque monkey , 2004, Experimental Brain Research.

[12]  R. L. de Valois,et al.  Cartesian and non-Cartesian responses in LGN, V1, and V2 cells , 2001, Visual Neuroscience.

[13]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[14]  Leslie G. Ungerleider,et al.  Contextual Modulation in Primary Visual Cortex of Macaques , 2001, The Journal of Neuroscience.

[15]  C. Hung,et al.  Real and illusory contour processing in area V1 of the primate: a cortical balancing act. , 2001, Cerebral cortex.

[16]  R. Malach,et al.  Relationship between orientation domains, cytochrome oxidase stripes, and intrinsic horizontal connections in squirrel monkey area V2. , 1994, Cerebral cortex.

[17]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[18]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[19]  D. V. van Essen,et al.  Development of connections within and between areas V1 and V2 of macaque monkeys , 1996, The Journal of comparative neurology.

[20]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[22]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[23]  R. Frostig,et al.  Optical imaging of neuronal activity. , 1988, Physiological reviews.

[24]  Friedrich Heitger,et al.  Simulation of Neuronal Responses Defining Depth Order and Contrast Polarity at Illusory Contours in Monkey Area V2 , 2001, Journal of Computational Neuroscience.

[25]  Anna W. Roe,et al.  The Functional Architecture of Area V2 in the Macaque Monkey , 1997 .

[26]  Y. Yamane,et al.  Complex objects are represented in macaque inferotemporal cortex by the combination of feature columns , 2001, Nature Neuroscience.

[27]  K. Rockland,et al.  Divergent feedback connections from areas V4 and TEO in the macaque , 1994, Visual Neuroscience.

[28]  N Vnek,et al.  Optical imaging of functional domains in the cortex of the awake and behaving monkey. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Levay,et al.  Ocular dominance and disparity coding in cat visual cortex , 1988, Visual Neuroscience.

[30]  P Girard,et al.  Visual latencies in cytochrome oxidase bands of macaque area V2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Kiper,et al.  Chromatic properties of neurons in macaque area V2 , 1997, Visual Neuroscience.

[32]  D. Mumford,et al.  Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency , 2002, Nature Neuroscience.

[33]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[34]  A. Leventhal,et al.  Neural correlates of boundary perception , 1998, Visual Neuroscience.

[35]  J. Horton,et al.  Cytochrome oxidase patches: a new cytoarchitectonic feature of monkey visual cortex. , 1984, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[36]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[38]  K. Martin,et al.  Connection from cortical area V2 to V3A in macaque monkey , 2002, The Journal of comparative neurology.

[39]  R. Tootell,et al.  Functional anatomy of the second visual area (V2) in the macaque , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  A W Roe,et al.  Specificity of color connectivity between primate V1 and V2. , 1999, Journal of neurophysiology.

[41]  E. Peterhans,et al.  Figure‐Ground Segregation at Contours: a Neural Mechanism in the Visual Cortex of the Alert Monkey , 1997, The European journal of neuroscience.

[42]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[43]  G. Orban,et al.  The organization of orientation selectivity throughout macaque visual cortex. , 2002, Cerebral cortex.

[44]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[45]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[46]  J. Kaas,et al.  Evolution of multiple areas and modules within neocortex. , 1993, Perspectives on developmental neurobiology.

[47]  J. Bullier,et al.  Visual latencies in areas V1 and V2 of the macaque monkey , 1995, Visual Neuroscience.

[48]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[49]  R. von der Heydt,et al.  Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  D. V. van Essen,et al.  Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. , 1993, Science.

[51]  Patrick Cavanagh,et al.  The perception of form and motion , 1993, Current Opinion in Neurobiology.

[52]  K. Purpura,et al.  Contrast sensitivity and spatial frequency response of primate cortical neurons in and around the cytochrome oxidase blobs , 1995, Vision Research.

[53]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[54]  E. Peterhans,et al.  Functional Organization of Area V2 in the Alert Macaque , 1993, The European journal of neuroscience.

[55]  Karl J. Friston,et al.  Attentional modulation of effective connectivity from V2 to V5/MT in humans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[57]  E. Seidemann,et al.  Dynamics of Depolarization and Hyperpolarization in the Frontal Cortex and Saccade Goal , 2002, Science.

[58]  Y. Zhou,et al.  Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[60]  M. Wong-Riley Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkeys , 1979, Brain Research.

[61]  E. Peterhans,et al.  Anatomy and physiology of a neural mechanism defining depth order and contrast polarity at illusory contours , 2000, The European journal of neuroscience.

[62]  Hong Zhou,et al.  Representation of stereoscopic edges in monkey visual cortex , 2000, Vision Research.

[63]  Lawrence C. Sincich,et al.  Oriented Axon Projections in Primary Visual Cortex of the Monkey , 2001, The Journal of Neuroscience.

[64]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[65]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[66]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[67]  R. Reid,et al.  The koniocellular pathway in primate vision. , 2000, Annual review of neuroscience.

[68]  U. Eysel,et al.  Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. , 1997, Cerebral cortex.

[69]  Hirofumi Kadono,et al.  Functional imaging of cat primary visual cortex with optical coherence tomography , 2002, SPIE BiOS.

[70]  D J Felleman,et al.  Segregation and convergence of functionally defined V2 thin stripe and interstripe compartment projections to area V4 of macaques. , 1999, Cerebral cortex.

[71]  R. LaMotte,et al.  Fine-scale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. , 2001, Journal of neurophysiology.

[72]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  Michael A. Paradiso,et al.  The Representation of Brightness in Primary Visual Cortex , 1996, Science.

[74]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[75]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[76]  D. Hocking,et al.  An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  John H. R. Maunsell,et al.  Visual response latencies in striate cortex of the macaque monkey. , 1992, Journal of neurophysiology.

[78]  C. Hung,et al.  Building surfaces from borders in Areas 17 and 18 of the cat , 2001, Vision Research.

[79]  G. Poggio,et al.  Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. , 1977, Journal of neurophysiology.

[80]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[81]  R. von der Heydt,et al.  Coding of Border Ownership in Monkey Visual Cortex , 2000, The Journal of Neuroscience.

[82]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[83]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[84]  S. Grossberg Cortical dynamics of three-dimensional figure-ground perception of two-dimensional pictures. , 1997, Psychological review.

[85]  C. Schroeder,et al.  A spatiotemporal profile of visual system activation revealed by current source density analysis in the awake macaque. , 1998, Cerebral cortex.

[86]  Leslie G. Ungerleider,et al.  Visual cortical projections and chemoarchitecture of macaque monkey pulvinar , 2000, The Journal of comparative neurology.

[87]  Lawrence C. Sincich,et al.  Divided by Cytochrome Oxidase: A Map of the Projections from V1 to V2 in Macaques , 2002, Science.

[88]  Lawrence C. Sincich,et al.  Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex , 2002, The Journal of comparative neurology.

[89]  J. Horton,et al.  Effect of early monocular enucleation upon ocular dominance columns and cytochrome oxidase activity in monkey and human visual cortex , 1998, Visual Neuroscience.

[90]  T. Maddess,et al.  The spatiotemporal properties of the Craik–O’Brien–Cornsweet effect are consistent with ‘filling-in’ , 1998, Vision Research.

[91]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[92]  J. B. Levitt,et al.  Receptive fields and functional architecture of macaque V2. , 1994, Journal of neurophysiology.

[93]  J. Bullier,et al.  Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. , 2001, Journal of neurophysiology.

[94]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[95]  K R Gegenfurtner,et al.  Processing of color, form, and motion in macaque area V2 , 1996, Visual Neuroscience.

[96]  M. Sur,et al.  Orientation Maps of Subjective Contours in Visual Cortex , 1996, Science.

[97]  C. Baker,et al.  Envelope-responsive neurons in areas 17 and 18 of cat. , 1994, Journal of neurophysiology.

[98]  A Grinvald,et al.  Long-Term Optical Imaging and Spectroscopy Reveal Mechanisms Underlying the Intrinsic Signal and Stability of Cortical Maps in V1 of Behaving Monkeys , 2000, The Journal of Neuroscience.

[99]  Charles D. Gilbert,et al.  A hierarchy of the functional organization for color, form and disparity in primate visual area V2 , 2001, Vision Research.

[100]  J. Bullier,et al.  Cross-correlation study of the temporal interactions between areas V1 and V2 of the macaque monkey. , 1999, Journal of neurophysiology.

[101]  J. Bullier,et al.  Functional interactions between areas V1 and V2 in the monkey , 1996, Journal of Physiology-Paris.

[102]  K. Rockland,et al.  Feedback connections from area MT of the squirrel monkey to areas V1 and V2 , 2000, The Journal of comparative neurology.

[103]  DH Hubel,et al.  Segregation of form, color, and stereopsis in primate area 18 , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  D Purves,et al.  Development of blobs in the visual cortex of macaques , 1993, The Journal of comparative neurology.

[105]  Andrew J. Parker,et al.  Local Disparity Not Perceived Depth Is Signaled by Binocular Neurons in Cortical Area V1 of the Macaque , 2000, The Journal of Neuroscience.

[106]  A. Parker,et al.  A specialization for relative disparity in V2 , 2002, Nature Neuroscience.

[107]  Carlos D. Brody,et al.  Disambiguating Different Covariation Types , 1999, Neural Computation.

[108]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[109]  J. Bakin,et al.  Visual Responses in Monkey Areas V1 and V2 to Three-Dimensional Surface Configurations , 2000, The Journal of Neuroscience.

[110]  R. Haber,et al.  Visual Perception , 2018, Encyclopedia of Database Systems.

[111]  S. Zeki,et al.  The functional organization of area V2, II: The impact of stripes on visual topography , 2002, Visual Neuroscience.

[112]  D. Hubel,et al.  Stereoscopic Vision in Macaque Monkey: Cells sensitive to Binocular Depth in Area 18 of the Macaque Monkey Cortex , 1970, Nature.

[113]  G. Orban,et al.  Processing of kinetically defined boundaries in areas V1 and V2 of the macaque monkey. , 2000, Journal of neurophysiology.

[114]  L. Krubitzer,et al.  The evolution of visual cortex: where is V2? , 1999, Trends in Neurosciences.

[115]  S. Zeki,et al.  The functional organization of area V2, I: Specialization across stripes and layers , 2002, Visual Neuroscience.