G Proteins Modulate D2 Receptor-Coupled K(ATP) Channels in Rat Dopaminergic Terminals

[1]  N. Akaike,et al.  Dopamine activates inward rectifier K+ channel in acutely dissociated rat substantia nigra neurones , 2000, Neuropharmacology.

[2]  T. Katada,et al.  Modulation of reconstituted ATP‐sensitive K+ channels by GTP‐binding proteins in a mammalian cell line , 1998, The Journal of physiology.

[3]  A. Moser,et al.  Selegiline induces dopamine release through ATP-sensitive potassium channels in the rat caudate-putamen in vitro , 1997, Neurochemistry International.

[4]  M. Tanaka,et al.  ATP-sensitive K+ channel openers block sulpiride-induced dopamine release in the rat striatum. , 1996, European journal of pharmacology.

[5]  J. Scholz,et al.  The effect of N-methyl-norsalsolinol on monoamine oxidase of the rat caudate nucleus in vitro , 1996, Neurochemistry International.

[6]  Masatoshi Tanaka,et al.  The role of ATP-sensitive potassium channels in striatal dopamine release: An in vivo microdialysis study , 1995, Pharmacology Biochemistry and Behavior.

[7]  I. Rowe,et al.  Characterization of an ATP‐modulated large conductance Ca(2+)‐activated K+ channel present in rat cortical neurones. , 1995, The Journal of physiology.

[8]  Y. J. Lin,et al.  Mastoparan activation of dopamine-modulated K+ channels on rat striatal neurons. , 1995, Neuroreport.

[9]  J C Liu,et al.  Dopamine-modulated potassium channels on rat striatal neurons: specific activation and cellular expression , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  A. Terzic,et al.  G proteins activate ATP-sensitive K+ channels by antagonizing ATP-dependent gating , 1994, Neuron.

[11]  Y. J. Lin,et al.  Multiple sulfonylurea-sensitive potassium channels: a novel subtype modulated by dopamine. , 1993, Molecular pharmacology.

[12]  F. Ashcroft,et al.  Block of ATP‐sensitive K+ channels in isolated mouse pancreatic β‐cells by 2,3‐butanedione monoxime , 1993, British journal of pharmacology.

[13]  J. Mark Treherne,et al.  The regional distribution of sulphonylurea binding sites in rat brain , 1991, Neuroscience.

[14]  M. Lazdunski,et al.  Sulfonylurea binding sites associated with ATP-regulated K+ channels in the central nervous system: autoradiographic analysis of their distribution and ontogenesis, and of their localization in mutant mice cerebellum , 1990, Brain Research.

[15]  F. Ashcroft,et al.  Tolbutamide reverses membrane hyperpolarisation induced by activation of D2 receptors and GABAB receptors in isolated substantia nigra neurones , 1990, Pflügers Archiv.

[16]  M. Lazdunski,et al.  Glucose, sulfonylureas, and neurotransmitter release: role of ATP-sensitive K+ channels. , 1990, Science.

[17]  O. Petersen,et al.  Electrophysiology of the pancreas. , 1987, Physiological reviews.

[18]  D. Cooper,et al.  Dopamine, acting through D-2 receptors, inhibits rat striatal adenylate cyclase by a GTP-dependent process. , 1986, Molecular pharmacology.

[19]  A. Noma,et al.  ATP-regulated K+ channels in cardiac muscle , 1983, Nature.

[20]  F. Rudolph,et al.  DOPAMINE‐SENSITIVE ADENYLATE CYCLASE FROM THE RAT CAUDATE NUCLEUS: REGULATION BY GUANYL NUCLEOTIDES AND THE INTERACTION OF MAGNESIUM AND MAGNESIUM ATP 1 , 1978, Journal of neurochemistry.

[21]  J. Brioni,et al.  ATP-sensitive potassium channels regulate in vivo dopamine release in rat striatum. , 1999, Japanese journal of pharmacology.

[22]  F. Ashcroft Adenosine 5'-triphosphate-sensitive potassium channels. , 1988, Annual review of neuroscience.

[23]  A. Bensadoun,et al.  Assay of proteins in the presence of interfering materials. , 1976, Analytical biochemistry.