Deformation behavior and microstructure evolution during hot working of Ti60 alloy with lamellar starting microstructure

[1]  A. Jäger,et al.  Flow softening and dynamic recrystallization behavior of BT9 titanium alloy: A study using process map development , 2017 .

[2]  Y. Ning,et al.  Effect of initial alpha lamellar thickness on deformation behavior of a near-α high-temperature alloy during thermomechanical processing , 2017 .

[3]  H. Di,et al.  Deformation heating and flow localization in Ti–15–3 metastable β titanium alloy subjected to high Z deformation , 2016 .

[4]  W. Zeng,et al.  Effect of globularization behavior of the lamellar alpha on tensile properties of Ti-17 alloy , 2016 .

[5]  V. A. Kumar,et al.  Strain hardening of Titanium alloy Ti6Al4V sheets with prior heat treatment and cold working , 2016 .

[6]  S. Abbasi,et al.  Flow behavior modeling of IMI834 titanium alloy during hot tensile deformation , 2015 .

[7]  Jinghui Li,et al.  Hot deformation mechanism and microstructure evolution of a new near β titanium alloy , 2013 .

[8]  B. Tang,et al.  Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333 , 2013 .

[9]  Jie Zhou,et al.  Hot workability characteristics of as-cast titanium alloy Ti–6Al–2Zr–1Mo–1V: A study using processing map , 2013 .

[10]  S. Suwas,et al.  The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0.1B , 2013 .

[11]  H. Yang,et al.  Mechanism and kinetics of static globularization in TA15 titanium alloy with transformed structure , 2012 .

[12]  J. Cabrera,et al.  Hot deformation behavior of a medium carbon microalloyed steel , 2011 .

[13]  A. K. Bhaduri,et al.  Constitutive analysis to predict high-temperature flow stress in modified 9Cr–1Mo (P91) steel , 2010 .

[14]  S. L. Semiatin,et al.  Microstructure evolution during warm working of Ti–6Al–4V with a colony-α microstructure , 2009 .

[15]  Li Si-wei Relationship between Temperature and Thermal Physical Properties of TA16 and TA17 Titanium Alloys , 2009 .

[16]  Miaoquan Li,et al.  High temperature deformation behavior of a near alpha Ti600 titanium alloy , 2008 .

[17]  P. Wanjara,et al.  Influence of thermomechanical processing on microstructural evolution in near-α alloy IMI834 , 2006 .

[18]  Di Zhang,et al.  Microstructure evolution of near-α titanium alloys during thermomechanical processing , 2006 .

[19]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[20]  S. Semiatin,et al.  Mechanisms of globularization of Ti-6Al-4V during static heat treatment , 2003 .

[21]  T. Bieler,et al.  The origins of heterogeneous deformation during primary hot working of Ti–6Al–4V , 2002 .

[22]  W. G. Frazier,et al.  Microstructural mechanisms during hot working of commercial grade Ti–6Al–4V with lamellar starting structure , 2002 .

[23]  H. J. McQueen,et al.  Constitutive analysis in hot working , 2002 .

[24]  S. Semiatin,et al.  The adiabatic correction factor for deformation heating during the uniaxial compression test , 2001 .

[25]  M. Es‐Souni Creep deformation behavior of three high-temperature near α-Ti alloys: IMI 834, IMI 829, and IMI 685 , 2001 .

[26]  S. Semiatin,et al.  Thermomechanical processing of alpha titanium alloys : an overview , 1999 .

[27]  S. Semiatin,et al.  Thermomechanical processing of beta titanium alloys—an overview , 1998 .

[28]  Woei-Shyan Lee,et al.  The effects of strain rate and temperature on the compressive deformation behaviour of Ti6Al4V alloy , 1997 .

[29]  F. Froes,et al.  Modification of alpha morphology in Ti-6Al-4V by thermomechanical processing , 1986 .