Preparation, characterization, and optical properties of nano- and submicron-sized Y2O3:Eu3+ phosphors

Ultrafine Y2O3:Eu3+ phosphors were prepared by a modified solution combustion method. The as-prepared samples with sizes of 17.6–80 nm (nanophosphors) and 300 nm (submicron phosphors) were characterized by x-ray diffraction, transmission electron microscope, scanning electron microscopy, selected area electron diffraction, and energy dispersive x-ray spectroscopy. The emission spectra of the samples are unchanged in comparison with that of standard material. The excitation spectra show a redshift in the charge-transfer-state band and a blueshift in the host gap band. In relation to commercial sample, the relative luminescence intensities of nano- and submicron phosphors are increased sufficiently to 64.4% and 93.6%, respectively. Higher quenching concentration of the activator Eu3+ ion was observed in the nanophosphor than that in the phosphor synthesized by solid state reaction.

[1]  Xiaodong Xu,et al.  Eu:Y2O3 nano-phosphor prepared by novel energy-saving solution combustion method , 2008 .

[2]  Liping Huang,et al.  Synthesis, characterization, and luminescent properties of Lu2O3:Eu phosphors , 2007 .

[3]  Z. Fu,et al.  Preparation and luminescent properties of cubic Eu3+ : Y2O3 nanocrystals and comparison to bulk Eu3+ : Y2O3 , 2007 .

[4]  Suwen Li,et al.  Preparation and luminescent properties of europium-doped yttria fibers by electrospinning , 2007 .

[5]  Yen‐Pei Fu Preparation and characterization of Y2O3:Eu phosphors by combustion process , 2007 .

[6]  G. Yi,et al.  Photoluminescence and cathodoluminescence properties of Y2O3:Eu nanophosphors prepared by combustion synthesis , 2007 .

[7]  Yungang Zhang,et al.  Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method , 2006 .

[8]  J. Han,et al.  Optimization of solvent condition for highly luminescent Y2O3:Eu3+ nanophosphor , 2006 .

[9]  Mukesh Roy,et al.  Sol–gel synthesis and characterization of Eu+++/Y2O3 nanophosphors by an alkoxide precursor , 2006 .

[10]  O. Graeve,et al.  Synthesis and Characterization of Luminescent Yttrium Oxide Doped with Tm and Yb , 2006 .

[11]  I. Kennedy,et al.  Photoluminescence of Eu3+:Y2O3 as an indication of crystal structure and particle size in nanoparticles synthesized by flame spray pyrolysis , 2006 .

[12]  Y. Qian,et al.  Shape-tailored photoluminescent intensity of red phosphor Y2O3:Eu3+ , 2005 .

[13]  M. Davolos,et al.  Morphological and luminescent studies on nanosized Er, Yb–Yttrium oxide up-converter prepared from different precursors , 2005 .

[14]  K. Y. Jung,et al.  Densification and Photoluminescence Improvement of Y 2 O 3 Phosphor Particles Prepared by Spray Pyrolysis , 2005 .

[15]  Y. Kang,et al.  Nano-sized Y2O3:Eu phosphor particles prepared by spray pyrolysis , 2005 .

[16]  H. Saitoh,et al.  Metal composition of Y2O3:Eu powder evaluated using particle analyzer , 2005 .

[17]  G. Exarhos,et al.  Photoluminescent properties of Y2O3:Eu3+ phosphors prepared via urea precipitation in non-aqueous solution , 2004 .

[18]  J. Silver,et al.  Fine Control of the Dopant Level in Cubic Y 2 O 3 : Eu3 + Phosphors , 2004 .

[19]  Hongwei Song,et al.  UV excitation properties of Eu3+ at the S6 site in bulk and nanocrystalline cubic Y2O3 , 2004 .

[20]  Houtong Chen,et al.  Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure. , 2003, Journal of colloid and interface science.

[21]  Ding Shi-wen,et al.  Synthesis and characterization of Y2O3:Eu nanopowder via EDTA complexing sol–gel process , 2003 .

[22]  Hongwei Song,et al.  Spectral difference between nanocrystalline and bulk Y2O3 : Eu3+ , 2003 .

[23]  B. Tissue,et al.  Structure, particle size, and annealing of gas phase-condensed Eu3+:Y2O3 nanophosphors , 2003 .

[24]  M. Wagner,et al.  Nanocrystalline Y2O3:Eu phosphors prepared by alkalide reduction , 2003 .

[25]  W. Stręk,et al.  Sintering properties of urea-derived Lu2O3-based phosphors , 2002 .

[26]  G. Xu,et al.  Synthesis and characterization of Eu:Y2O3 nanoparticles , 2002 .

[27]  A. Speghini,et al.  Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis , 2002 .

[28]  Chung‐Hsin Lu,et al.  Photoluminescence Characteristics of $Y_2O_3 : Eu^{3+}$ Nanophosphors Prepared Using Sol-Gel Thermolysis , 2001 .

[29]  Chunhua Yan,et al.  Luminescent properties of Li+ doped nanosized Y2O3:Eu , 2001 .

[30]  K. Jacob,et al.  Glycol–nitrate combustion synthesis of fine sinter-active yttria , 2001 .

[31]  A. Speghini,et al.  Fractal aggregates of lanthanide-doped Y_2O_3 nanoparticles obtained by propellant synthesis , 2001 .

[32]  Seong-Geun Oh,et al.  Preparation of Eu-Doped Y(2)O(3) Luminescent Nanoparticles in Nonionic Reverse Microemulsions. , 2000, Journal of colloid and interface science.

[33]  Chunhua Yan,et al.  Rare earth activated nanosized oxide phosphors: synthesis and optical properties , 2000 .

[34]  P. Odier,et al.  Gelation by Acrylamide, a Quasi‐Universal Medium for the Synthesis of Fine Oxide Powders for Electroceramic Applications , 2000 .

[35]  M. Senna,et al.  Relationship between optical properties and crystallinity of nanometer Y2O3: Eu phosphor , 2000 .

[36]  Seung-Bin Park,et al.  Preparation of Y2O3:Eu Phosphor Particles of Filled Morphology at High Precursor Concentrations by Spray Pyrolysis , 2000 .

[37]  A. Speghini,et al.  Yttria-based nano-sized powders: A new class of fractal materials obtained by combustion synthesis , 2000 .

[38]  T. Hirai,et al.  Preparation of Y2O3 ∶ Eu3+phosphor fine particles using an emulsion liquid membrane system , 2000 .

[39]  Huabiao Yuan,et al.  Size dependence of the luminescence spectra and dynamics of Eu3+:Y2O3 nanocrystals , 1999 .

[40]  R. Tidecks,et al.  CHEMICAL VAPOR SYNTHESIS AND LUMINESCENCE PROPERTIES OF NANOCRYSTALLINE CUBIC Y2O3:EU , 1999 .

[41]  L. Sangaletti,et al.  Synthesis and optical properties of nanosized powders: lanthanide-doped Y2O3 , 1999 .

[42]  J. McKittrick,et al.  The influence of processing parameters on luminescent oxides produced by combustion synthesis , 1999 .

[43]  Qiang-Bing Li,et al.  Effects of the Coating Process on Nanoscale Y2O3:Eu3+ Powders , 1999 .

[44]  Qiang-Bing Li,et al.  Effects of grain size on wavelength of Y2O3:Eu3+ emission spectra , 1997 .

[45]  Hergen Eilers,et al.  Spectra and dynamics of monoclinic Eu2O3 and Eu3+:Y2O3 nanocrystals , 1997 .

[46]  Zhang Weiping,et al.  Combustion synthesis and photoluminescence of nanocrystalline Y2O3:Eu phosphors , 1997 .

[47]  D. Jeyakumar,et al.  Yttrium oxide:Eu3+ red phosphor by self-propagating high temperature synthesis , 1996 .

[48]  H. Eilers,et al.  Laser spectroscopy of nanocrystalline Eu2O3 and Eu3+:Y2O3 , 1996 .

[49]  R. P. Rao Preparation and Characterization of Fine‐Grain Yttrium‐Based Phosphors by Sol‐Gel Process , 1996 .

[50]  Gregory J. Exarhos,et al.  Glycine-nitrate combustion synthesis of oxide ceramic powders , 1990 .

[51]  J. Ross Ullman's encyclopedia of industrial chemistry , 1986 .

[52]  K. C. Adiga,et al.  A new approach to thermochemical calculations of condensed fuel-oxidizer mixtures , 1981 .

[53]  L. Ozawa,et al.  The Effect of Exciting Wavelength on Optimum Activator Concentration , 1971 .