An agile laser with ultra-low frequency noise and high sweep linearity.

We report on a fiber-stabilized agile laser with ultra-low frequency noise. The frequency noise power spectral density is comparable to that of an ultra-stable cavity stabilized laser at Fourier frequencies higher than 30 Hz. When it is chirped at a constant rate of approximately 40 MHz/s, the max non-linearity frequency error is about 50 Hz peak-to-peak over more than 600 MHz tuning range. The Rayleigh backscattering is found to be a significant frequency noise source dependent on fiber length, chirping rate and the power imbalance of the interferometer arms. We analyze this effect both theoretically and experimentally and put forward techniques to reduce this noise contribution.

[1]  T. Udem,et al.  Optical frequency transfer via 920 km fiber link with 10−19 relative accuracy , 2009, 2012 Conference on Lasers and Electro-Optics (CLEO).

[2]  Z. Barber,et al.  Accuracy of active chirp linearization for broadband frequency modulated continuous wave ladar. , 2010, Applied optics.

[3]  K. Djerroud,et al.  A coherent optical link through the turbulent atmosphere , 2010, EFTF-2010 24th European Frequency and Time Forum.

[4]  Z. Barber,et al.  Ultrabroadband optical chirp linearization for precision metrology applications. , 2009, Optics letters.

[5]  Fetah Benabid,et al.  10 kHz accuracy of an optical frequency reference based on (12)C2H2-filled large-core kagome photonic crystal fibers. , 2009, Optics express.

[6]  F. Kéfélian,et al.  High-resolution optical frequency dissemination on a telecommunications network with data traffic. , 2009, Optics letters.

[7]  Giorgio Santarelli,et al.  Ultralow-frequency-noise stabilization of a laser by locking to an optical fiber-delay line. , 2009, Optics letters.

[8]  P. Lemonde,et al.  Ultrastable lasers based on vibration insensitive cavities , 2009, 0901.4717.

[9]  J. Laskar,et al.  Quantum physics exploring gravity in the outer solar system: the SAGAS project , 2007, 0711.0304.

[10]  F. K'ef'elian,et al.  Long-distance frequency transfer over an urban fiber link using optical phase stabilization , 2008, 0807.1882.

[11]  K. Tsubono,et al.  Stabilization of laser intensity and frequency using optical fiber , 2008 .

[12]  S. Dawkins,et al.  Considerations on the Measurement of the Stability of Oscillators with Frequency Counters , 2007, 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum.

[13]  S. Dawkins,et al.  Considerations on the measurement of the stability of oscillators with frequency counters , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[14]  F Bretenaker,et al.  Active stabilization of a rapidly chirped laser by an optoelectronic digital servo-loop control. , 2007, Optics letters.

[15]  J. Ye,et al.  Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1x10(-15). , 2006, Optics letters.

[16]  F. Bretenaker,et al.  Quantum storage in rare-earth-doped crystals for secure networks , 2007 .

[17]  Fabien Bretenaker,et al.  Phase locking of a frequency agile laser , 2006 .

[18]  David E McClelland,et al.  High-bandwidth laser frequency stabilization to a fiber-optic delay line. , 2006, Applied optics.

[19]  Martin Allard,et al.  High-power and ultranarrow DFB laser: the effect of linewidth reduction systems on coherence length and interferometer noise , 2006, SPIE Defense + Commercial Sensing.

[20]  Shibin Jiang,et al.  Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry , 2005, IEEE Photonics Technology Letters.

[21]  S. Rowan,et al.  Laser interferometry for the detection of gravitational waves , 2005 .

[22]  S Tonda,et al.  Wideband versatile radio-frequency spectrum analyzer. , 2003, Optics letters.

[23]  G A Cranch Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback. , 2002, Optics letters.

[24]  Flavio C. Cruz,et al.  VISIBLE LASERS WITH SUBHERTZ LINEWIDTHS , 1999 .

[25]  C. Greiner,et al.  Laser frequency stabilization by means of optical self-heterodyne beat-frequency control. , 1998, Optics letters.

[26]  Guy N. Pearson,et al.  The role of laser coherence length in continuous-wave coherent laser radar , 1998 .

[27]  K. Wanser,et al.  Fundamental phase noise limit in optical fibres due to temperature fluctuations , 1992 .

[28]  P. Gysel,et al.  Statistical properties of Rayleigh backscattering in single-mode fibers , 1990 .

[29]  Y. T. Chen,et al.  Use of single-mode optical fiber in the stabilization of laser frequency. , 1989, Applied optics.

[30]  A. Hartog,et al.  On the theory of backscattering in single-mode optical fibers , 1984 .

[31]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[32]  D. W. Allan,et al.  Statistics of atomic frequency standards , 1966 .

[33]  Sellmeier Zur Erklärung der abnormen Farbenfolge im Spectrum einiger Substanzen , 1871 .