Signalling Cost Analysis of Community Model

Data fusion is generally defined as the application of methods that combines data from multiple sources and collect that information in order to get conclusions. This paper analyzes the signalling cost of different data fusion filter models available in the literature with the new community model. The signalling cost of the Community Model has been mathematically formulated by incorporating the normalized signalling cost for each transmission. This process reduces the signalling burden on master fusion filter and improves throughput. A comparison of signalling cost of the existing data fusion models along with the new community model has also been presented in this paper. The results show that our community model incurs improvement with respect to the existing models in terms of signalling cost.

[1]  M. Bedworth,et al.  The Omnibus model: a new model of data fusion? , 2000 .

[2]  Samuel S. Blackman,et al.  Multiple-Target Tracking with Radar Applications , 1986 .

[3]  H. Maître,et al.  01 - Fusion de données en traitement d'images: modèles d'information et décisions , 1994 .

[4]  Chun C. Lai,et al.  Multisensor Fusion and Integration: Theories, Applications, and its Perspectives , 2011, IEEE Sensors Journal.

[5]  Wilfried Elmenreich A Review on System Architectures for Sensor Fusion Applications , 2007, SEUS.

[6]  N. A. Carlson,et al.  Federated filter for fault-tolerant integrated navigation systems , 1988, IEEE PLANS '88.,Position Location and Navigation Symposium, Record. 'Navigation into the 21st Century'..

[7]  James C. Deckert,et al.  Minimax failure detection and identification in redundant gyro and accelerometer systems. , 1973 .

[8]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[9]  S. C. Felter An overview of decentralized Kalman filter techniques , 1990, IEEE Technical Conference on Southern Tier.

[10]  Meng Wang,et al.  Signalling Cost Evaluation of Mobility Management Schemes for Different Core Network Architectural Arrangements in 3GPP LTE/SAE , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[11]  Andrew Starr,et al.  A Review of data fusion models and architectures: towards engineering guidelines , 2005, Neural Computing & Applications.

[12]  Johann van der Merwe,et al.  A survey on peer-to-peer key management for mobile ad hoc networks , 2007, CSUR.

[13]  Y. Bar-Shalom Tracking and data association , 1988 .

[14]  F. A. Evans,et al.  Experimental strapdown redundant sensor inertial navigation system , 1970 .

[15]  W. B. Bell,et al.  Cascading filtered DTS data into a loosely-coupled GPS/INS system , 1998, IEEE 1998 Position Location and Navigation Symposium (Cat. No.98CH36153).

[16]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[17]  Andrew T. Campbell,et al.  P-MIP: Paging Extensions for Mobile IP , 2002, Mob. Networks Appl..

[18]  K. H. Kim,et al.  Review of multisensor data fusion architectures and techniques , 1993, Proceedings of 8th IEEE International Symposium on Intelligent Control.

[19]  Cary R Spitzer,et al.  The avionics handbook , 2001 .

[20]  S. P. Karatsinides Enhancing filter robustness in cascaded GPS-INS integrations , 1994 .

[21]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[22]  Stelios C. A. Thomopoulos,et al.  Distributed Fusion Architectures and Algorithms for Target Tracking , 1997, Proc. IEEE.

[23]  Dr.A.Muthu Kumaravel Mining User Profile Using Clustering FromSearch Engine Logs , 2014 .

[24]  Eduardo F. Nakamura,et al.  Information fusion for wireless sensor networks: Methods, models, and classifications , 2007, CSUR.