Communication-Based on Topology Preservation of Chaotic Dynamics

By using the Chua circuit we present experimental results for the feasibility of a chaotic communication scheme in which large parameter variations are allowed. The parameters are varied along special codimension one directions, on which the topology of chaotic attractors remains roughly invariant.

[1]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[2]  Grebogi,et al.  Critical exponents for crisis-induced intermittency. , 1987, Physical review. A, General physics.

[3]  Ying-Cheng Lai,et al.  Communicating with chaos using two-dimensional symbolic dynamics , 1999 .

[4]  Pérez,et al.  Extracting messages masked by chaos. , 1995, Physical review letters.

[5]  T L Carroll Noise-resistant chaotic synchronization. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Kevin M. Short,et al.  Signal Extraction from Chaotic Communications , 1997 .

[7]  C. Grebogi,et al.  COLOR MAP OF LYAPUNOV EXPONENTS OF INVARIANT SETS , 1999 .

[8]  Parlitz,et al.  Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. , 1996, Physical review letters.

[9]  Kurths,et al.  Phase synchronization of chaotic oscillators. , 1996, Physical review letters.

[10]  Grebogi,et al.  Communicating with chaos. , 1993, Physical review letters.

[11]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[12]  R. D. Pinto,et al.  Symbolic dynamics analysis in the dripping faucet experiment , 1999 .

[13]  Celso Grebogi,et al.  Topology of Windows in the High-Dimensional Parameter Space of Chaotic Maps , 2003, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering.

[14]  Celso Grebogi,et al.  From High Dimensional Chaos to Stable Periodic Orbits: The Structure of Parameter Space , 1997 .

[15]  Celso Grebogi,et al.  Coding information in the natural complexity of chaos , 1993, Optics & Photonics.

[16]  L. Chua,et al.  The double scroll , 1985, 1985 24th IEEE Conference on Decision and Control.

[17]  H. Abarbanel,et al.  Determining embedding dimension for phase-space reconstruction using a geometrical construction. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[19]  Kuang-Yow Lian,et al.  Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis , 2000 .

[20]  Rosa,et al.  Integrated chaotic communication scheme , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[22]  Luis López,et al.  Information transfer in chaos-based communication. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  Grebogi,et al.  Plateau onset for correlation dimension: When does it occur? , 1993, Physical review letters.

[24]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[25]  Ying-Cheng Lai,et al.  Dynamics of coding in communicating with chaos , 1998 .

[26]  L. Chua,et al.  The double scroll family , 1986 .

[27]  C Grebogi,et al.  Communication through chaotic modeling of languages. , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  M. Baptista Cryptography with chaos , 1998 .

[29]  Celso Grebogi,et al.  Signal dropout Reconstruction in Communicating with Chaos , 1999, Int. J. Bifurc. Chaos.

[30]  José Roberto Castilho Piqueira,et al.  Conditional targeting for communication , 2004 .

[31]  Grebogi,et al.  Exploiting the natural redundancy of chaotic signals in communication systems , 2000, Physical review letters.

[32]  Celso Grebogi,et al.  Conditions for efficient chaos-based communication. , 2003, Chaos.

[33]  Martin Hasler,et al.  Synchronization of chaotic systems and transmission of information , 1998 .

[34]  Hayes,et al.  Experimental control of chaos for communication. , 1994, Physical review letters.

[35]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[36]  Celso Grebogi,et al.  NOISE FILTERING IN COMMUNICATION WITH CHAOS , 1997 .

[37]  Jürgen Kurths,et al.  Alternating Locking Ratios in Imperfect Phase Synchronization , 1999 .

[38]  Ying-Cheng Lai,et al.  CODING, CHANNEL CAPACITY, AND NOISE RESISTANCE IN COMMUNICATING WITH CHAOS , 1997 .

[39]  Simon Haykin,et al.  Communication Systems , 1978 .