Electrical Contacts in Monolayer Arsenene Devices.

Arsenene, arsenic analogue of graphene, as an emerging member of two-dimensional semiconductors (2DSCs), is quite promising in next-generation electronic and optoelectronic applications. The metal electrical contacts play a vital role in the charge transport and photoresponse processes of nanoscale 2DSC devices and even can mask the intrinsic properties of 2DSCs. Here, we present a first comprehensive study of the electrical contact properties of monolayer (ML) arsenene with different electrodes by using ab initio electronic calculations and quantum transport simulations. Schottky barrier is always formed with bulk metal contacts owing to the Fermi level pinning (pinning factor S = 0.33), with electron Schottky barrier height (SBH) of 0.12, 0.21, 0.25, 0.35, and 0.50 eV for Sc, Ti, Ag, Cu, and Au contacts and hole SBH of 0.75 and 0.78 eV for Pd and Pt contacts, respectively. However, by contact with 2D graphene, the Fermi level pinning effect can be reduced due to the suppression of metal-induced gap states. Remarkably, a barrier free hole injection is realized in ML arsenene device with graphene-Pt hybrid electrode, suggestive of a high device performance in such a ML arsenene device. Our study provides a theoretical foundation for the selection of favorable electrodes in future ML arsenene devices.

[1]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS Nano.

[2]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[3]  François Léonard,et al.  Electrical contacts to one- and two-dimensional nanomaterials. , 2011, Nature nanotechnology.

[4]  Jiaxin Zheng,et al.  Interfacial Properties of Bilayer and Trilayer Graphene on Metal Substrates , 2013, Scientific Reports.

[5]  Jing Lu,et al.  Does the Dirac cone of germanene exist on metal substrates? , 2016, Physical chemistry chemical physics : PCCP.

[6]  Suyeon Cho,et al.  Phase patterning for ohmic homojunction contact in MoTe2 , 2015, Science.

[7]  Laurence Eaves,et al.  High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. , 2017, Nature nanotechnology.

[8]  Ravindra Pandey,et al.  Atomically thin group v elemental films: theoretical investigations of antimonene allotropes. , 2015, ACS applied materials & interfaces.

[9]  Yuchen Du,et al.  MoS2 Field-Effec t Transistors With Graphene/ Metal Heterocontacts , 2014 .

[10]  D. Tománek,et al.  Strain-induced metal-semiconductor transition in monolayers and bilayers of gray arsenic: A computational study , 2015 .

[11]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[12]  Dianyuan Fan,et al.  Broadband Nonlinear Optical Response in Few‐Layer Antimonene and Antimonene Quantum Dots: A Promising Optical Kerr Media with Enhanced Stability , 2017 .

[13]  Ming Lei,et al.  Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations , 2016, Scientific reports.

[14]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[15]  Lei Wang,et al.  Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. , 2015, Nature nanotechnology.

[16]  P. Guan,et al.  Electronic and Optical Properties of Arsenene Under Uniaxial Strain , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  Yusuf Leblebici,et al.  MoS2 transistors operating at gigahertz frequencies. , 2014, Nano letters.

[18]  W. Goddard,et al.  Schottky-Barrier-Free Contacts with Two-Dimensional Semiconductors by Surface-Engineered MXenes. , 2016, Journal of the American Chemical Society.

[19]  Sean C. Smith,et al.  Structural and Electronic Properties of Layered Arsenic and Antimony Arsenide , 2015 .

[20]  Faisal Ahmed,et al.  Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides. , 2017, ACS nano.

[21]  Haixin Chang,et al.  Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. , 2014, ACS nano.

[22]  Wei Ji,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature communications.

[23]  H. Zeng,et al.  Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. , 2015, Angewandte Chemie.

[24]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[25]  Z. Ni,et al.  Does p-type ohmic contact exist in WSe2-metal interfaces? , 2015, Nanoscale.

[26]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[27]  Wenhui Wang,et al.  Two-dimensional antimonene single crystals grown by van der Waals epitaxy , 2016, Nature Communications.

[28]  J. Maultzsch,et al.  Few‐Layer Antimonene by Liquid‐Phase Exfoliation , 2016, Angewandte Chemie.

[29]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[30]  Graphdiyne-metal contacts and graphdiyne transistors. , 2014, Nanoscale.

[31]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[32]  Yong-Wei Zhang,et al.  Layer-dependent Band Alignment and Work Function of Few-Layer Phosphorene , 2014, Scientific reports.

[33]  Jing Lu,et al.  Monolayer Phosphorene-Metal Interfaces , 2015, 1507.02420.

[34]  J. Su,et al.  Designing high performance metal-mMoS2 interfaces by two-dimensional insertions with suitable thickness. , 2016, Physical chemistry chemical physics : PCCP.

[35]  M. Fontana,et al.  Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions , 2012, Scientific Reports.

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[38]  F. Xia,et al.  Role of contacts in graphene transistors: A scanning photocurrent study , 2009 .

[39]  Pu Huang,et al.  Many-body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene , 2017 .

[40]  Jing Lu,et al.  Monolayer Phosphorene–Metal Contacts , 2016 .

[41]  Cheng-Cheng Liu,et al.  Quantum spin Hall insulators and quantum valley Hall insulators of BiX/SbX (X = H, F, Cl, and Br) monolayers with a record bulk band gap , 2014 .

[42]  F. Schwierz Graphene transistors. , 2010, Nature nanotechnology.

[43]  Jing Lu,et al.  Interfacial properties of stanene–metal contacts , 2016 .

[44]  Li Yang,et al.  Scaling laws for the band gap and optical response of phosphorene nanoribbons , 2014 .

[45]  Klaus Kern,et al.  Contact and edge effects in graphene devices. , 2008, Nature nanotechnology.

[46]  J. Brink,et al.  Doping graphene with metal contacts. , 2008, Physical review letters.

[47]  Qing Hua Wang,et al.  Tuning on-off current ratio and field-effect mobility in a MoS(2)-graphene heterostructure via Schottky barrier modulation. , 2014, ACS nano.

[48]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[49]  Jing Lu,et al.  Monolayer Bismuthene-Metal Contacts: A Theoretical Study. , 2017, ACS applied materials & interfaces.

[50]  Hao-Chung Kuo,et al.  Direct Synthesis and Practical Bandgap Estimation of Multilayer Arsenene Nanoribbons , 2016 .

[51]  Wei Chen,et al.  Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. , 2014, ACS nano.

[52]  Yida Li,et al.  Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. , 2015, ACS nano.

[53]  G. Fiori,et al.  Performance of arsenene and antimonene double-gate MOSFETs from first principles , 2016, Nature Communications.

[54]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[55]  S. Ciraci,et al.  Stability of single-layer and multilayer arsenene and their mechanical and electronic properties , 2016 .

[56]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[57]  Kaustav Banerjee,et al.  Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors , 2014 .

[58]  H. Zeng,et al.  Retraction of "Few-Layer Antimonene: Large Yield Synthesis, Exact Atomical Structure, and Outstanding Optical Limiting". , 2017, Journal of the American Chemical Society.

[59]  M. Pumera,et al.  2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus , 2017, Advanced materials.

[60]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[61]  M. Alcamí,et al.  Mechanical Isolation of Highly Stable Antimonene under Ambient Conditions , 2016, Advanced materials.

[62]  Lu Wang,et al.  Photothermoelectric and photovoltaic effects both present in MoS2 , 2015, Scientific Reports.

[63]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[64]  S. Ciraci,et al.  Single-layer crystalline phases of antimony: Antimonenes , 2015 .

[65]  Li Yang,et al.  Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Depressed Many-electron Effects , 2015 .

[66]  Dapeng Yu,et al.  Tunable and sizable band gap of single-layer graphene sandwiched between hexagonal boron nitride , 2012 .

[67]  Chia-Wei Chen,et al.  The advent of multilayer antimonene nanoribbons with room temperature orange light emission. , 2016, Chemical communications.

[68]  F Schwierz,et al.  Two-dimensional materials and their prospects in transistor electronics. , 2015, Nanoscale.

[69]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[70]  Youyong Li,et al.  Structures, mobility and electronic properties of point defects in arsenene, antimonene and an antimony arsenide alloy , 2017 .

[71]  Peide D. Ye,et al.  ${\rm MoS}_{2}$ Field-Effect Transistors With Graphene/Metal Heterocontacts , 2014, IEEE Electron Device Letters.

[72]  Jiwoong Park,et al.  Imaging of photocurrent generation and collection in single-layer graphene. , 2009, Nano letters.

[73]  R Martel,et al.  Synthesis of Antimonene on Germanium. , 2017, Nano letters.

[74]  Kaustav Banerjee,et al.  Electrical contacts to two-dimensional semiconductors. , 2015, Nature materials.

[75]  Li-Ming Wang,et al.  Sulfur Dioxide and Nitrogen Dioxide Gas Sensor Based on Arsenene: A First-Principle Study , 2017, IEEE Electron Device Letters.

[76]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[77]  Jiaxin Zheng,et al.  Does the Dirac Cone Exist in Silicene on Metal Substrates? , 2014, Scientific Reports.

[78]  F. Xia,et al.  Photocurrent imaging and efficient photon detection in a graphene transistor. , 2009, Nano letters.

[79]  Hao Wu,et al.  Toward barrier free contact to molybdenum disulfide using graphene electrodes. , 2015, Nano letters.

[80]  Chen Liu,et al.  Epitaxial Growth and Air‐Stability of Monolayer Antimonene on PdTe2 , 2017, Advanced materials.

[81]  F. Pan,et al.  Interfacial Properties of Monolayer MoSe2–Metal Contacts , 2016 .

[82]  Motohiko Ezawa,et al.  Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems , 2014, 1410.5166.