Physical Layer scalability of WDM optical packet interconnection networks

The physical layer scalability of a packet-switched optical interconnection network utilizing semiconductor optical amplifier (SOA) switch elements is investigated experimentally and with numerical modeling. Optical packets containing payloads of multiple wavelength-division-multiplexing (WDM) channels are propagated through cascaded SOA-based switching nodes in a recirculating test-bed environment. Experiments show that bit-error rates (BERs) below 10/sup -9/ can be maintained through 58 switching nodes for the entire eight-channel 10-Gb/s-per-channel payload distributed over 24.2 nm of the C-band. When the packet payload consists of a single 10-Gb/s channel, 98 node hops can be traversed before a BER of 10/sup -9/ is exceeded. In conjunction with the experiments, a novel phenomenological modeling technique is developed in order to forecast the scalability of SOA-based WDM packet interconnection networks. This technique is shown to yield results that correlate well with the experimental data. These investigations are presented as predictors of the physical limitations of large-scale WDM packet-switched networks.

[1]  I.T. Lima,et al.  Study of system performance in a 107-km dispersion-managed recirculating loop due to polarization effects , 2001, IEEE Photonics Technology Letters.

[2]  J.P. Mack,et al.  Optical packet routing and virtual buffering in an eight-node data vortex switching fabric , 2004, IEEE Photonics Technology Letters.

[3]  Ronald P. Luijten,et al.  Optical-packet-switched interconnect for supercomputer applications[Invited] , 2004 .

[4]  G. Eisenstein Semiconductor optical amplifiers , 1989, IEEE Circuits and Devices Magazine.

[5]  Hamid Bagheri,et al.  Parallel optical interconnects for enterprise class server clusters: needs and technology solutions , 2003, IEEE Commun. Mag..

[6]  Dilip Sarkar,et al.  Hypercube connected rings: a fault-tolerant and scalable architecture for virtual lightwave network topology , 1994, Proceedings of INFOCOM '94 Conference on Computer Communications.

[7]  Qimin Yang,et al.  WDM packet routing for high-capacity data networks , 2001 .

[8]  Lars Thylén,et al.  Semiconductor laser amplifier optimization: an analytical and experimental study , 1989 .

[9]  Anthony E. Kelly,et al.  Semiconductor optical amplifiers: performance and applications in optical packet switching [Invited] , 2004 .

[10]  Qimin Yang,et al.  Performances of the Data Vortex switch architecture under nonuniform and bursty traffic , 2002 .

[11]  J. Chrostowski,et al.  Measurements of very low bit-error rates of optical switches based on semiconductor optical amplifiers , 1997, IEEE Photonics Technology Letters.

[12]  A. Paradisi,et al.  Experimental demonstration and numerical simulation of an optical recirculating loop operating at 10 gb/s , 2003, Proceedings of the 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference - IMOC 2003. (Cat. No.03TH8678).

[13]  V. Kaman,et al.  All-optical label swapping networks and technologies , 2000, Journal of Lightwave Technology.

[14]  J.P. Mack,et al.  Demonstration of a complete 12-port Terabit capacity optical packet switching fabric , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[15]  Yi Dong,et al.  1050-km WDM transmission of 8/spl times/10.709Gb/s DPSK signal using cascaded in-line semiconductor optical amplifier , 2004 .

[16]  Keren Bergman,et al.  Emulation of realistic network traffic patterns on an eight-node data vortex interconnection network subsystem , 2004 .

[17]  Wei Lu,et al.  Physical layer scalability demonstration of a WDM packet interconnection network , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..

[18]  N. Olsson Lightwave systems with optical amplifiers , 1989 .

[19]  Marco Listanti,et al.  Architectural and technological issues for future optical Internet networks , 2000, IEEE Commun. Mag..

[20]  G. Papadimitriou,et al.  Optical switching: switch fabrics, techniques, and architectures , 2003 .

[21]  Rodney S. Tucker,et al.  Photonic Packet Switching: An Overview , 1999 .

[22]  B.A. Small,et al.  Optical packet switching through multiple nodes in the data vortex architecture , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[23]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[24]  Emmanuel Varvarigos,et al.  Performance evaluation of an optically interconnected "scheduling" switch network for Pareto traffic , 2004 .

[25]  Claus Popp Larsen,et al.  Experimental and analytical evaluation of packaged 4/spl times/4 InGaAsP/InP semiconductor optical amplifier gate switch matrices for optical networks , 1996 .

[26]  Ivan Andonovic,et al.  Buffering in optical packet switches , 1998 .

[27]  Chris Develder,et al.  The European IST project DAVID: a viable approach toward optical packet switching , 2003, IEEE J. Sel. Areas Commun..

[28]  F. Arecchi,et al.  Theory of optical maser amplifiers , 1965 .

[29]  M. Zirngibl,et al.  Optical switch fabrics for ultra-high-capacity IP routers , 2003 .

[30]  William J. Dally,et al.  Principles and Practices of Interconnection Networks , 2004 .

[31]  A. Tzanakaki,et al.  Analysis of tunable wavelength converters based on cross-gain modulation in semiconductor optical amplifiers operating in the counter propagating mode , 2000 .

[32]  Zhong Pan,et al.  Demonstration of all-optical packet switching routers with optical label swapping and 2R regeneration for scalable optical label switching network applications , 2003 .

[33]  Gd Giok-Djan Khoe,et al.  Optical packet switching and buffering by using all-optical signal processing methods , 2003 .

[34]  Jianjun Yu,et al.  Improvement of cascaded semiconductor optical amplifier gates by using holding light injection , 2001 .

[35]  Cauligi S. Raghavendra,et al.  Optical Interconnection Networks , 1985, ICPP.

[36]  R. Luijten,et al.  An Optical Packet-Switched Interconnect for Supercomputer Applications ∗ , 2004 .

[37]  Richard V. Penty,et al.  WASPNET: a wavelength switched packet network , 1999, IEEE Commun. Mag..

[38]  X. Yang,et al.  Design and implementation of ultra-low latency optical label switching for packet-switched WDM networks , 2000, Journal of Lightwave Technology.

[39]  Keren Bergman,et al.  Cascading switching nodes in data vortex optical packet interconnection network , 2004 .

[40]  M.J.H. Sander-Jochem,et al.  8 x 10 Gb/s DWDM transmission over 240 km of standard fiber using a cascade of semiconductor optical amplifiers , 2000, IEEE Photonics Technology Letters.