An Adaptive Perfectly Matched Layer Technique for Time-harmonic Scattering Problems

Abstract. We develop an adaptive perfectly matched layer (PML) technique for solving the time harmonic scattering problems. The PML parameters such as the thickness of the layer and the fictitious medium property are determined through sharp a posteriori error estimates. The derived finite element a posteriori estimate for adapting meshes has the nice feature that it decays exponentially away from the boundary of the fixed domain where the PML layer is placed. This property makes the total computational costs insensitive to the thickness of the PML absorbing layers. Numerical experiments are included to illustrate the competitive behavior of the proposed adaptive method.

[1]  Endre Süli,et al.  The Adaptive Computation of Far-Field Patterns by A Posteriori Error Estimation of Linear Functionals , 1998 .

[2]  Ricardo H. Nochetto,et al.  Data Oscillation and Convergence of Adaptive FEM , 2000, SIAM J. Numer. Anal..

[3]  E. Turkel,et al.  Absorbing PML boundary layers for wave-like equations , 1998 .

[4]  R. Kress,et al.  Integral equation methods in scattering theory , 1983 .

[5]  Zhiming Chen,et al.  Adaptive Galerkin Methods with Error Control for a Dynamical Ginzburg-Landau Model in Superconductivity , 2000, SIAM J. Numer. Anal..

[6]  Peter Monk,et al.  The Perfectly Matched Layer in Curvilinear Coordinates , 1998, SIAM J. Sci. Comput..

[7]  Haijun Wu,et al.  An Adaptive Finite Element Method with Perfectly Matched Absorbing Layers for the Wave Scattering by Periodic Structures , 2003, SIAM J. Numer. Anal..

[8]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[9]  Peter Monk,et al.  A posteriori error indicators for Maxwell's equations , 1998 .

[10]  Frank Schmidt,et al.  Solving Time-Harmonic Scattering Problems Based on the Pole Condition II: Convergence of the PML Method , 2003, SIAM J. Math. Anal..

[11]  Ricardo H. Nochetto,et al.  Residual type a posteriori error estimates for elliptic obstacle problems , 2000, Numerische Mathematik.

[12]  Matti Lassas,et al.  On the existence and convergence of the solution of PML equations , 1998, Computing.

[13]  W. Rheinboldt,et al.  Error Estimates for Adaptive Finite Element Computations , 1978 .

[14]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[15]  Zhiming Chen,et al.  On the Efficiency of Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients , 2002, SIAM J. Sci. Comput..

[16]  Weng Cho Chew,et al.  Advances in the theory of perfectly matched layers , 2001 .

[17]  L. Milne‐Thomson A Treatise on the Theory of Bessel Functions , 1945, Nature.

[18]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[19]  Ricardo H. Nochetto,et al.  A characteristic Galerkin method with adaptive error control for the continuous casting problem , 2000 .

[20]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .