Human Immunodeficiency Virus Reverse Transcriptase

3’-Azido-3’-deoxythymidine 5’4riphosphate (AZTTP) was an efficient substrate for the human immunodeficiency virus 1 reverse transcriptase. It was incorporated into both homopolymer and defined sequence DNA-primed RNA templates and DNA-primed DNA templates. The substrate and inhibitor kinetics of both AZTTP and dTTP were dependent on the template-primer and reaction conditions used. dTMP was incorporated into poly(rA)*oligo(dT) and into a defined sequence DNA-primed RNA template (when the other three 2’-deoxynucleoside 5’-triphosphates were present) as a conventional substrate, with steady-state K, values of 5-10 pM. The results suggest that the reverse transcriptase was capable of processive DNA polymerization on these DNA-primed RNA templates. In contrast, in the absence of the other three 2’deoxynucleoside 5’-triphosphates, the time course for incorporation of dTMP into the same defined sequence DNA-primed RNA template was biphasic. A burst of product formation was observed followed by a slow steady-state rate with a K,,, value of 0.082 pM. AZTMP incorporation into poly(rA).oligo(dT) and into the defined sequence DNA-primed RNA template produced similar biphasic time courses and steady-state Km values. These results were consistent with rate-limiting dissociation of the polymerase*template-primer complex after “forced” termination of polymerization. AZTMP and dTMP were both incorporated into the homopolymer DNA-primed DNA template, poly(dA)* oligo(dT), and a defined sequence DNA-primed DNA template as conventional substrates. Their Km values were similar (2-10 MM). The absence of biphasic time courses suggested that dissociation of the DNA-primed DNA templates from the enzyme, after forced termination, was not rate-limiting. This was consistent with a more distributive mode of DNA polymerization. With the defined sequence template-primers and poly(dA)*oligo(dT), Ki values for both dTTP and AZTTP were comparable to their K,,, values. Thus, AZTTP appeared to be a simple competitive substrateinhibitor with respect to dTTP. AZTTP inhibition of dTMP incorporation into poly(rA)*oligo(dT) was linear competitive at low concentrations (O-100 nM) of AZTTP (Ki = 35 nM) but became hyperbolic (decreasing potency) at concentrations of AZTTP above this range. A mechanism for this nonlinear inhibition is discussed.

[1]  S. L. Le Grice,et al.  Mutating Conserved Residues in the Ribonuclease H Domain of Ty3 Reverse Transcriptase Affects Specialized Cleavage Events* , 2002, The Journal of Biological Chemistry.

[2]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[3]  Luc Montagnier,et al.  HIV-1 Genome Nuclear Import Is Mediated by a Central DNA Flap , 2000, Cell.

[4]  J. DeStefano The orientation of binding of human immunodeficiency virus reverse transcriptase on nucleic acid hybrids. , 1995, Nucleic acids research.

[5]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[6]  L. Kleiman,et al.  Inhibition of tRNA₃(Lys)-primed reverse transcription by human APOBEC3G during human immunodeficiency virus type 1 replication. , 2006, Journal of virology.

[7]  J. G. Levin,et al.  Effect of Polypurine Tract (PPT) Mutations on Human Immunodeficiency Virus Type 1 Replication: a Virus with a Completely Randomized PPT Retains Low Infectivity , 2005, Journal of Virology.

[8]  K. Mollier,et al.  Nuclear Import Defect of Human Immunodeficiency Virus Type 1 DNA Flap Mutants Is Not Dependent on the Viral Strain or Target Cell Type , 2006, Journal of Virology.

[9]  M. Götte Effects of nucleotides and nucleotide analogue inhibitors of HIV-1 reverse transcriptase in a ratchet model of polymerase translocation. , 2006, Current pharmaceutical design.

[10]  E. De Clercq,et al.  Impact of the Central Polypurine Tract on the Kinetics of Human Immunodeficiency Virus Type 1 Vector Transduction , 2003, Journal of Virology.

[11]  R. Lee,et al.  The p51 subunit of human immunodeficiency virus type 1 reverse transcriptase is essential in loading the p66 subunit on the template primer. , 1998, Biochemistry.

[12]  S. Goff,et al.  Reverse Transcriptase and the Generation of Retroviral DNA , 1997 .

[13]  A. D. Clark,et al.  Crystal structures of clinically relevant Lys103Asn/Tyr181Cys double mutant HIV-1 reverse transcriptase in complexes with ATP and non-nucleoside inhibitor HBY 097. , 2007, Journal of molecular biology.

[14]  T. Steitz,et al.  Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. , 1998, Current opinion in structural biology.

[15]  M. Mirande,et al.  Viral Hijacking of Mitochondrial Lysyl-tRNA Synthetase , 2006, Journal of Virology.

[16]  T. Steitz,et al.  A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. , 1994, Science.

[17]  S. Scaringe,et al.  Synthetic tRNALys,3 as the replication primer for the HIV-1HXB2 and HIV-1Mal genomes. , 2004, Nucleic acids research.

[18]  Xiaojian Yao,et al.  Assessment of the Role of the Central DNA Flap in Human Immunodeficiency Virus Type 1 Replication by Using a Single-Cycle Replication System , 2004, Journal of Virology.

[19]  Y. Li,et al.  Activity of the isolated HIV RNase H domain and specific inhibition by N-hydroxyimides. , 2004, Biochemical and biophysical research communications.

[20]  L. Kleiman,et al.  The selective packaging and annealing of primer tRNALys3 in HIV-1. , 2004, Current HIV research.

[21]  C. Ehresmann,et al.  tRNAs as primer of reverse transcriptases. , 1995, Biochimie.

[22]  Samuel H. Wilson,et al.  Studies on the mechanism of human immunodeficiency virus reverse transcriptase. Steady-state kinetics, processivity, and polynucleotide inhibition. , 1988, The Journal of biological chemistry.

[23]  B. Grinde,et al.  The plus strand is discontinuous in a subpopulation of unintegrated HIV-1 DNA , 1991, Archives of Virology.

[24]  S. L. Le Grice,et al.  Mutating the "primer grip" of p66 HIV-1 reverse transcriptase implicates tryptophan-229 in template-primer utilization. , 1994, The Journal of biological chemistry.

[25]  Philippe Colin,et al.  The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain , 2001, Nature Biotechnology.

[26]  H. Steinhoff,et al.  Temperature-dependent equilibrium between the open and closed conformation of the p66 subunit of HIV-1 reverse transcriptase revealed by site-directed spin labelling. , 2000, Journal of molecular biology.

[27]  H. Kung,et al.  Interaction between retroviral U5 RNA and the T psi C loop of the tRNA(Trp) primer is required for efficient initiation of reverse transcription , 1992, Journal of virology.

[28]  T. Eickbush,et al.  Origin and evolution of retroelements based upon their reverse transcriptase sequences. , 1990, The EMBO journal.

[29]  B. Roques,et al.  Stimulation of HIV-1 Minus Strand Strong Stop DNA Transfer by Genomic Sequences 3′ of the Primer Binding Site* , 2006, Journal of Biological Chemistry.

[30]  L. Odriozola,et al.  Factors affecting the dimerization of the p66 form of HIV-1 reverse transcriptase. , 2001, European journal of biochemistry.

[31]  J. Steitz,et al.  A general two-metal-ion mechanism for catalytic RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  T. Steitz,et al.  Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. , 1992, Science.

[33]  Yvonne Jones,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors , 1995, Nature Structural Biology.

[34]  G. Hannon,et al.  Crystal Structure of Argonaute and Its Implications for RISC Slicer Activity , 2004, Science.

[35]  D. Matthews,et al.  Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. , 1991, Science.

[36]  T. Steitz DNA- and RNA-dependent DNA polymerases , 1993, Structural Insights into Gene Expression and Protein Synthesis.

[37]  S. L. Le Grice,et al.  Examining Ty3 Polypurine Tract Structure and Function by Nucleoside Analog Interference* , 2006, Journal of Biological Chemistry.

[38]  D. Myszka,et al.  An RNA complex of the HIV-1 A-loop and tRNA(Lys,3) is stabilized by nucleoside modifications. , 2002, Journal of the American Chemical Society.

[39]  S. Goff,et al.  Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. , 1993, The Journal of biological chemistry.

[40]  R. Goody,et al.  Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[41]  H. Buc,et al.  DNA Synthesis by HIV-1 Reverse Transcriptase at the Central Termination Site , 2001, The Journal of Biological Chemistry.

[42]  P. Charneau,et al.  A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract , 1991, Journal of virology.

[43]  S. L. Le Grice,et al.  Modulation of HIV-1 reverse transcriptase function in "selectively deleted" p66/p51 heterodimers. , 1994, The Journal of biological chemistry.

[44]  R. Goody,et al.  Characterization of the dimerization process of HIV‐1 reverse transcriptase heterodimer using intrinsic protein fluorescence , 1993, FEBS letters.

[45]  F. Gago,et al.  Identification of a putative binding site for [2',5'-bis-O-(tert-butyldimethylsilyl)-beta-D-ribofuranosyl]-3'-spiro-5''-(4''-amino-1'',2''-oxathiole-2'',2''-dioxide)thymine (TSAO) derivatives at the p51-p66 interface of HIV-1 reverse transcriptase. , 2001, Journal of medicinal chemistry.

[46]  J. Champoux,et al.  Sequence, Distance, and Accessibility Are Determinants of 5′-End-directed Cleavages by Retroviral RNases H* , 2006, Journal of Biological Chemistry.

[47]  C. Ehresmann,et al.  Structural Variability of the Initiation Complex of HIV-1 Reverse Transcription* , 2004, Journal of Biological Chemistry.

[48]  B. Berkhout,et al.  Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions. , 1995, Journal of molecular biology.

[49]  W. Vainchenker,et al.  The human immunodeficiency virus type-1 central DNA flap is a crucial determinant for lentiviral vector nuclear import and gene transduction of human hematopoietic stem cells. , 2000 .

[50]  Thomas A Steitz,et al.  The Structural Mechanism of Translocation and Helicase Activity in T7 RNA Polymerase , 2004, Cell.

[51]  J. Wakefield,et al.  Mutations in both the U5 region and the primer-binding site influence the selection of the tRNA used for the initiation of HIV-1 reverse transcription. , 1996, Virology.

[52]  R. Bambara,et al.  Mutations within the Primer Grip Region of HIV-1 Reverse Transcriptase Result in Loss of RNase H Function* , 1997, The Journal of Biological Chemistry.

[53]  B. Roques,et al.  Substrate Requirements for Secondary Cleavage by HIV-1 Reverse Transcriptase RNase H* , 2002, The Journal of Biological Chemistry.

[54]  G. Deléage,et al.  Dimerization kinetics of HIV-1 and HIV-2 reverse transcriptase: a two step process. , 1995, Journal of molecular biology.

[55]  D. Stammers,et al.  HIV-1 reverse transcriptase: crystallization and analysis of domain structure by limited proteolysis. , 1988, Biochemistry.

[56]  S. Sarafianos,et al.  Effects of Mutations in the G Tract of the Human Immunodeficiency Virus Type 1 Polypurine Tract on Virus Replication and RNase H Cleavage , 2004, Journal of Virology.

[57]  Tania A. Baker,et al.  Comparative architecture of transposase and integrase complexes , 2001, Nature Structural Biology.

[58]  J. Kappes,et al.  Identification of amino acid residues in the human immunodeficiency virus type-1 reverse transcriptase tryptophan-repeat motif that are required for subunit interaction using infectious virions. , 2005, Journal of molecular biology.

[59]  R. Goody,et al.  Co-expression of the subunits of the heterodimer of HIV-1 reverse transcriptase in Escherichia coli. , 1989, The Journal of biological chemistry.

[60]  K. Musier-Forsyth,et al.  The Interaction between HIV-1 Gag and Human Lysyl-tRNA Synthetase during Viral Assembly* , 2003, Journal of Biological Chemistry.

[61]  Thomas Tuschl,et al.  Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein , 2005, Nature.

[62]  T. Tuschl,et al.  Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC-mediated mRNA cleavage. , 2005, Molecular cell.

[63]  H. Buc,et al.  DNA curvature controls termination of plus strand DNA synthesis at the centre of HIV-1 genome. , 1997, Journal of molecular biology.

[64]  C. McHenry,et al.  Human immunodeficiency virus nucleocapsid protein accelerates strand transfer of the terminally redundant sequences involved in reverse transcription. , 1994, The Journal of biological chemistry.

[65]  Jae Young Lee,et al.  Making and breaking nucleic acids: two-Mg2+-ion catalysis and substrate specificity. , 2006, Molecular cell.

[66]  E. Domingo,et al.  Human immunodeficiency virus type 1 reverse transcriptase: role of Tyr115 in deoxynucleotide binding and misinsertion fidelity of DNA synthesis. , 1996, The EMBO journal.

[67]  R. Goody,et al.  RNase H activity of HIV reverse transcriptases is confined exclusively to the dimeric forms , 1992, FEBS letters.

[68]  S. L. Le Grice,et al.  Purine analog substitution of the HIV-1 polypurine tract primer defines regions controlling initiation of plus-strand DNA synthesis , 2006, Nucleic acids research.

[69]  S. L. Le Grice,et al.  Investigating HIV-1 Polypurine Tract Geometry via Targeted Insertion of Abasic Lesions in the (–)-DNA Template and (+)-RNA Primer* , 2005, Journal of Biological Chemistry.

[70]  A. D. Clark,et al.  Structure of unliganded HIV-1 reverse transcriptase at 2.7 A resolution: implications of conformational changes for polymerization and inhibition mechanisms. , 1996, Structure.

[71]  C. Ehresmann,et al.  Initiation of Reverse Transcripion of HIV-1: Secondary Structure of the HIV-1 RNA/tRNA|rlmbopopnbop|Lys|clobop|3 (Template/Primer) Complex , 1995 .

[72]  S. F. Grice In the beginning": initiation of minus strand DNA synthesis in retroviruses and LTR-containing retrotransposons. , 2003 .

[73]  H. Buc,et al.  Compression of the DNA minor groove is responsible for termination of DNA synthesis by HIV-1 reverse transcriptase. , 1999, Journal of molecular biology.

[74]  K. Musier-Forsyth,et al.  In Vitro Characterization of the Interaction between HIV-1 Gag and Human Lysyl-tRNA Synthetase* , 2006, Journal of Biological Chemistry.

[75]  K. Musier-Forsyth,et al.  Nucleic acid chaperone activity of HIV-1 nucleocapsid protein: critical role in reverse transcription and molecular mechanism. , 2005, Progress in nucleic acid research and molecular biology.

[76]  R. Goody,et al.  Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate. , 1999, Journal of molecular biology.

[77]  P. Barbara,et al.  Insights on the role of nucleic acid/protein interactions in chaperoned nucleic acid rearrangements of HIV-1 reverse transcription , 2007, Proceedings of the National Academy of Sciences.

[78]  S. Sarafianos,et al.  Mutations in the 5′ End of the Human Immunodeficiency Virus Type 1 Polypurine Tract Affect RNase H Cleavage Specificity and Virus Titer , 2003, Journal of Virology.

[79]  Arkady Mustaev,et al.  A Ratchet Mechanism of Transcription Elongation and Its Control , 2005, Cell.

[80]  C. Tisné,et al.  New insights into the formation of HIV-1 reverse transcription initiation complex. , 2007, Biochimie.

[81]  S. Benkovic,et al.  Human immunodeficiency virus type 1 reverse transcriptase: spatial and temporal relationship between the polymerase and RNase H activities. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[82]  A. D. Clark,et al.  Crystal structure of HIV‐1 reverse transcriptase in complex with a polypurine tract RNA:DNA , 2001, The EMBO journal.

[83]  A. Aiyar,et al.  A specific orientation of RNA secondary structures is required for initiation of reverse transcription , 1994, Journal of virology.

[84]  S. L. Le Grice,et al.  Alternative modes of polymerization distinguish the subunits of equine infectious anemia virus reverse transcriptase. , 1994, The Journal of biological chemistry.

[85]  C. Richardson,et al.  Processing of the primer for plus strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. , 1990, The Journal of biological chemistry.

[86]  B. Berkhout,et al.  Initiation of HIV-1 Reverse Transcription Is Regulated by a Primer Activation Signal* , 2001, The Journal of Biological Chemistry.

[87]  Ben Berkhout,et al.  Dimerization and Template Switching in the 5′ Untranslated Region between Various Subtypes of Human Immunodeficiency Virus Type 1 , 2003, Journal of Virology.

[88]  R. S. Goody,et al.  Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Jeffrey S. Smith,et al.  RNase H Requirements for the Second Strand Transfer Reaction of Human Immunodeficiency Virus Type 1 Reverse Transcription , 1999, Journal of Virology.

[90]  K. Morikawa,et al.  Three-dimensional structure of ribonuclease H from E. coli , 1990, Nature.

[91]  J. Mak,et al.  Primer tRNAs for reverse transcription , 1997, Journal of virology.

[92]  B. Larder,et al.  Mutations within the RNase H domain of human immunodeficiency virus type 1 reverse transcriptase abolish virus infectivity. , 1991, The Journal of general virology.

[93]  T. Steitz DNA Polymerases: Structural Diversity and Common Mechanisms* , 1999, The Journal of Biological Chemistry.

[94]  N. Taylor,et al.  Lentivirus-mediated gene transfer in primary T cells is enhanced by a central DNA flap , 2001, Gene Therapy.

[95]  B. Marchand,et al.  The Pyrophosphate Analogue Foscarnet Traps the Pre-translocational State of HIV-1 Reverse Transcriptase in a Brownian Ratchet Model of Polymerase Translocation* , 2007, Journal of Biological Chemistry.

[96]  A. Telesnitsky,et al.  Selection of Optimal Polypurine Tract Region Sequences during Moloney Murine Leukemia Virus Replication , 2000, Journal of Virology.

[97]  S. Sarafianos,et al.  RNase H Cleavage of the 5′ End of the Human Immunodeficiency Virus Type 1 Genome , 2001, Journal of Virology.

[98]  J. Taylor,et al.  Template switching by reverse transcriptase during DNA synthesis , 1990, Journal of virology.

[99]  J. Shiloach,et al.  Protein-protein interactions of HIV-1 reverse transcriptase: implication of central and C-terminal regions in subunit binding. , 1991, Biochemistry.

[100]  D. Bolognesi,et al.  Association of the viral reverse transcriptase with an enzyme degrading the RNA moiety of RNA-DNA hybrids. , 1971, Bibliotheca haematologica.

[101]  M. Malim,et al.  Reassessment of the Roles of Integrase and the Central DNA Flap in Human Immunodeficiency Virus Type 1 Nuclear Import , 2002, Journal of Virology.

[102]  R L Jernigan,et al.  Collective motions in HIV-1 reverse transcriptase: examination of flexibility and enzyme function. , 1999, Journal of molecular biology.

[103]  S. Hughes,et al.  In vitro analysis of the effects of mutations in the G-tract of the human immunodeficiency virus type 1 polypurine tract on RNase H cleavage specificity. , 2007, Virology.

[104]  J. Leis,et al.  A retroviral RNA secondary structure required for efficient initiation of reverse transcription , 1988, Journal of virology.

[105]  P. Boyer,et al.  Cassette mutagenesis of the reverse transcriptase of human immunodeficiency virus type 1 , 1992, Journal of virology.

[106]  D. Operario,et al.  Reduced dNTP Interaction of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Promotes Strand Transfer* , 2006, Journal of Biological Chemistry.

[107]  B. Berkhout,et al.  The first strand transfer during HIV-1 reverse transcription can occur either intramolecularly or intermolecularly. , 1998, Virology.

[108]  S. L. Le Grice,et al.  Alterations to the primer grip of p66 HIV-1 reverse transcriptase and their consequences for template-primer utilization. , 1996, Biochemistry.

[109]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. , 1991, Biochemistry.

[110]  M. Sawaya,et al.  An open and closed case for all polymerases. , 1999, Structure.

[111]  L. Kleiman,et al.  Molecular analysis of the second template switch during reverse transcription of the HIV RNA template. , 1996, Biochemistry.

[112]  E. Arts,et al.  Functional Characterization of Chimeric Reverse Transcriptases with Polypeptide Subunits of Highly Divergent HIV-1 Group M and O Strains* , 2001, The Journal of Biological Chemistry.

[113]  T. Copeland,et al.  Characterization of highly immunogenic p66/p51 as the reverse transcriptase of HTLV-III/LAV. , 1986, Science.

[114]  M. Wainberg,et al.  Initiation of (-) strand DNA synthesis from tRNA(3Lys) on lentiviral RNAs: implications of specific HIV-1 RNA-tRNA(3Lys) interactions inhibiting primer utilization by retroviral reverse transcriptases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[115]  A. E. Rosen,et al.  Efficient initiation of HIV-1 reverse transcription in vitro. Requirement for RNA sequences downstream of the primer binding site abrogated by nucleocapsid protein-dependent primer-template interactions. , 2003, The Journal of biological chemistry.

[116]  K. Musier-Forsyth,et al.  The HIV-1 central DNA flap region contains a "flapping" third strand. , 2007, Biophysical chemistry.

[117]  C. Ehresmann,et al.  Modified nucleotides of tRNA(3Lys) modulate primer/template loop-loop interaction in the initiation complex of HIV-1 reverse transcription. , 1993, The Journal of biological chemistry.

[118]  A. Engelman,et al.  Wild-Type Levels of Nuclear Localization and Human Immunodeficiency Virus Type 1 Replication in the Absence of the Central DNA Flap , 2002, Journal of Virology.

[119]  J. DeStefano,et al.  Physical Mapping of HIV Reverse Transcriptase to the 5′ End of RNA Primers* , 2001, The Journal of Biological Chemistry.

[120]  S. L. Le Grice,et al.  Using pyrrolo-deoxycytosine to probe RNA/DNA hybrids containing the human immunodeficiency virus type-1 3' polypurine tract. , 2004, Nucleic acids research.

[121]  Samuel H. Wilson,et al.  Structure/function studies of human immunodeficiency virus type 1 reverse transcriptase. Alanine scanning mutagenesis of an alpha-helix in the thumb subdomain. , 1994, The Journal of biological chemistry.

[122]  D. Hazuda,et al.  Inhibition of HIV-1 Ribonuclease H by a Novel Diketo Acid, 4-[5-(Benzoylamino)thien-2-yl]-2,4-dioxobutanoic Acid* , 2003, The Journal of Biological Chemistry.

[123]  H. Gross,et al.  Localization of the Active Site of HIV-1 Reverse Transcriptase-associated RNase H Domain on a DNA Template Using Site-specific Generated Hydroxyl Radicals* , 1998, The Journal of Biological Chemistry.

[124]  B. Grinde,et al.  Mutations in the central polypurine tract of HIV-1 result in delayed replication. , 1992, Virology.

[125]  K. Borroto-Esoda,et al.  Equine infectious anemia virus and human immunodeficiency virus DNA synthesis in vitro: characterization of the endogenous reverse transcriptase reaction , 1991, Journal of virology.

[126]  R. Bambara,et al.  Processing of an HIV Replication Intermediate by the Human DNA Replication Enzyme FEN1* , 1998, Journal of Biological Chemistry.

[127]  P. Charneau,et al.  A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication , 1992, Journal of virology.

[128]  T. Steitz,et al.  Structural basis of asymmetry in the human immunodeficiency virus type 1 reverse transcriptase heterodimer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[129]  R. Goody,et al.  Dimerization of human immunodeficiency virus type 1 reverse transcriptase. A target for chemotherapeutic intervention. , 1990, The Journal of biological chemistry.

[130]  G. Klarmann,et al.  Investigating the "steric gate" of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase by targeted insertion of unnatural amino acids. , 2007, Biochemistry.

[131]  H. Huthoff,et al.  The availability of the primer activation signal (PAS) affects the efficiency of HIV-1 reverse transcription initiation , 2007, Nucleic acids research.

[132]  Z. Debyser,et al.  The central DNA flap of the human immunodeficiency virus type 1 is important for viral replication. , 2006, Biochemical and biophysical research communications.

[133]  Wei Yang,et al.  Stepwise analyses of metal ions in RNase H catalysis from substrate destabilization to product release , 2006, The EMBO journal.

[134]  B. Roques,et al.  The Annealing Mechanism of HIV-1 Reverse Transcription Primer onto the Viral Genome* , 2004, Journal of Biological Chemistry.

[135]  D W Rodgers,et al.  The structure of unliganded reverse transcriptase from the human immunodeficiency virus type 1. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[136]  S. Guadagnini,et al.  HIV‐1 DNA Flap formation promotes uncoating of the pre‐integration complex at the nuclear pore , 2007, The EMBO journal.

[137]  P. Barbara,et al.  Single-molecule FRET studies of important intermediates in the nucleocapsid-protein-chaperoned minus-strand transfer step in HIV-1 reverse transcription. , 2005, Biophysical journal.

[138]  S. Benkovic,et al.  Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. , 1992, Science.

[139]  E. Kool,et al.  Site-directed mutagenesis in the fingers subdomain of HIV-1 reverse transcriptase reveals a specific role for the beta3-beta4 hairpin loop in dNTP selection. , 2007, Journal of molecular biology.

[140]  S. Goff,et al.  Role of residues in the tryptophan repeat motif for HIV-1 reverse transcriptase dimerization. , 2003, Journal of molecular biology.

[141]  N. Sluis-Cremer,et al.  Dimerization of human immunodeficiency virus type 1 reverse transcriptase as an antiviral target. , 2006, Current pharmaceutical design.

[142]  S. L. Le Grice,et al.  Pre-existing Distortions in Nucleic Acid Structure Aid Polypurine Tract Selection by HIV-1 Reverse Transcriptase* , 2002, The Journal of Biological Chemistry.

[143]  A. D. Clark,et al.  Structure of HIV-1 reverse transcriptase in a complex with the non-nucleoside inhibitor α-APA R 95845 at 2.8 å resolution , 1995 .

[144]  C. Morrow,et al.  Importance of A-loop complementarity with tRNAHis anticodon for continued selection of tRNAHis as the HIV reverse transcription primer , 2007, Virology Journal.

[145]  S. L. Le Grice,et al.  Mutations in the Primer Grip Region of HIV Reverse Transcriptase Can Increase Replication Fidelity* , 1999, The Journal of Biological Chemistry.

[146]  M. Wainberg,et al.  Sequences within Pr160gag-pol affecting the selective packaging of primer tRNA(Lys3) into HIV-1. , 2000, Journal of molecular biology.

[147]  A. Panet,et al.  Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[148]  M. Wainberg,et al.  The importance of the A-rich loop in human immunodeficiency virus type 1 reverse transcription and infectivity , 1997, Journal of virology.

[149]  A. Panet,et al.  Characterization of the double stranded RNA dependent RNase activity associated with recombinant reverse transcriptases. , 1992, Nucleic acids research.

[150]  A. D. Clark,et al.  Crystal structure of human immunodeficiency virus type 1 reverse transcriptase complexed with double-stranded DNA at 3.0 A resolution shows bent DNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[151]  M. Peretz,et al.  Identification of a Central DNA Flap in Feline Immunodeficiency Virus , 2001, Journal of Virology.

[152]  Shigeyuki Yokoyama,et al.  Structural Basis for Substrate Selection by T7 RNA Polymerase , 2004, Cell.

[153]  S. L. Le Grice,et al.  Selective inhibition of HIV-1 reverse transcriptase-associated ribonuclease H activity by hydroxylated tropolones , 2005, Nucleic acids research.

[154]  P. Boyer,et al.  Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase. , 1994, Journal of molecular biology.

[155]  S. L. Le Grice,et al.  Examining Interactions of HIV-1 Reverse Transcriptase with Single-stranded Template Nucleotides by Nucleoside Analog Interference* , 2006, Journal of Biological Chemistry.

[156]  M. Waring,et al.  Characterization of (+) strand initiation and termination sequences located at the center of the equine infectious anemia virus genome. , 1999, Biochemistry.

[157]  E. Furfine,et al.  Reverse transcriptase.RNase H from the human immunodeficiency virus. Relationship of the DNA polymerase and RNA hydrolysis activities. , 1991, The Journal of biological chemistry.

[158]  M. Wainberg,et al.  Analysis of Efficiency and Fidelity of HIV-1 (+)-Strand DNA Synthesis Reveals a Novel Rate-limiting Step during Retroviral Reverse Transcription* , 2001, The Journal of Biological Chemistry.

[159]  B. Berkhout,et al.  The tRNA Primer Activation Signal in the Human Immunodeficiency Virus Type 1 Genome Is Important for Initiation and Processive Elongation of Reverse Transcription , 2002, Journal of Virology.

[160]  Jianhui Guo,et al.  Zinc Finger Structures in the Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Facilitate Efficient Minus- and Plus-Strand Transfer , 2000, Journal of Virology.

[161]  S. L. Le Grice,et al.  Mutating a conserved motif of the HIV-1 reverse transcriptase palm subdomain alters primer utilization. , 1997, Biochemistry.

[162]  H. Buc,et al.  HIV-1 reverse transcription. A termination step at the center of the genome. , 1994, Journal of molecular biology.

[163]  G. Klarmann,et al.  Site- and subunit-specific incorporation of unnatural amino acids into HIV-1 reverse transcriptase. , 2004, Protein expression and purification.

[164]  S. L. Le Grice,et al.  Two Modes of HIV-1 Polypurine Tract Cleavage Are Affected by Introducing Locked Nucleic Acid Analogs into the (-) DNA Template* , 2004, Journal of Biological Chemistry.

[165]  Janaki Veeraraghavan,et al.  On the Roles of Saccharomyces cerevisiae Dna2p and Flap Endonuclease 1 in Okazaki Fragment Processing* , 2004, Journal of Biological Chemistry.

[166]  T. Steitz The structural basis of the transition from initiation to elongation phases of transcription, as well as translocation and strand separation, by T7 RNA polymerase. , 2004, Current opinion in structural biology.

[167]  D. Ficheux,et al.  During the early phase of HIV-1 DNA synthesis, nucleocapsid protein directs hybridization of the TAR complementary sequences via the ends of their double-stranded stem. , 2006, Journal of molecular biology.

[168]  S. L. Le Grice,et al.  Hydrolysis of RNA/DNA hybrids containing nonpolar pyrimidine isosteres defines regions essential for HIV type 1 polypurine tract selection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[169]  M. Amacker,et al.  Chimeric HIV-1 and feline immunodeficiency virus reverse transcriptases: critical role of the p51 subunit in the structural integrity of heterodimeric lentiviral DNA polymerases. , 1998, Journal of molecular biology.

[170]  T. Kunkel,et al.  Structure/function studies of HIV-1(1) reverse transcriptase: dimerization-defective mutant L289K. , 1993, Biochemistry.

[171]  Jianping Ding,et al.  Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance. , 1994, Journal of molecular biology.

[172]  J. DeStefano,et al.  Parameters that influence the binding of human immunodeficiency virus reverse transcriptase to nucleic acid structures. , 1993, Biochemistry.

[173]  J. G. Levin,et al.  Sequence and structural determinants required for priming of plus-strand DNA synthesis by the human immunodeficiency virus type 1 polypurine tract , 1996, Journal of virology.

[174]  C. Ehresmann,et al.  Binding and kinetic properties of HIV‐1 reverse transcriptase markedly differ during initiation and elongation of reverse transcription. , 1996, The EMBO journal.

[175]  T. Naas,et al.  Subunit‐selective mutagenesis indicates minimal polymerase activity in heterodimer‐associated p51 HIV‐1 reverse transcriptase. , 1991, The EMBO journal.

[176]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[177]  S. L. Le Grice,et al.  Alanine-scanning Mutations in the “Primer Grip” of p66 HIV-1 Reverse Transcriptase Result in Selective Loss of RNA Priming Activity* , 1997, The Journal of Biological Chemistry.

[178]  Samuel H. Wilson,et al.  A minor groove binding track in reverse transcriptase , 1997, Nature Structural Biology.

[179]  R. Landick Active-Site Dynamics in RNA Polymerases , 2004, Cell.

[180]  S. Sarafianos,et al.  Touching the heart of HIV-1 drug resistance: the fingers close down on the dNTP at the polymerase active site. , 1999, Chemistry & biology.

[181]  K A Johnson,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors , 1995, Science.

[182]  L. Menéndez-Arias,et al.  Coupling Ribose Selection to Fidelity of DNA Synthesis , 2000, The Journal of Biological Chemistry.

[183]  S. Thrall,et al.  Kinetic Analysis of Four HIV-1 Reverse Transcriptase Enzymes Mutated in the Primer Grip Region of p66 , 1997, The Journal of Biological Chemistry.

[184]  A. D. Clark,et al.  Structure and functional implications of the polymerase active site region in a complex of HIV-1 RT with a double-stranded DNA template-primer and an antibody Fab fragment at 2.8 A resolution. , 1998, Journal of molecular biology.

[185]  Wei Yang,et al.  Crystal Structures of RNase H Bound to an RNA/DNA Hybrid: Substrate Specificity and Metal-Dependent Catalysis , 2005, Cell.

[186]  S. L. Le Grice,et al.  Analysis of the interactions of HIV1 replication primer tRNA(Lys,3) with nucleocapsid protein and reverse transcriptase. , 1993, Journal of molecular biology.

[187]  R. Sousa,et al.  A model for the mechanism of polymerase translocation. , 1997, Journal of molecular biology.

[188]  J. Champoux,et al.  The sequence features important for plus strand priming by human immunodeficiency virus type 1 reverse transcriptase. , 1993, The Journal of biological chemistry.

[189]  C. Tan,et al.  Functional characterization of RNA-dependent DNA polymerase and RNase H activities of a recombinant HIV reverse transcriptase. , 1991, Biochemistry.

[190]  T. Steitz,et al.  Accuracy, lesion bypass, strand displacement and translocation by DNA polymerases. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[191]  T. Steitz,et al.  Genetic and crystallographic studies of the 3',5'-exonucleolytic site of DNA polymerase I. , 1988, Science.

[192]  E. Arts,et al.  Restoration of tRNA3Lys-primed(-)-strand DNA synthesis to an HIV-1 reverse transcriptase mutant with extended tRNAs. Implications for retroviral replication. , 1996, The Journal of biological chemistry.

[193]  T. Darden,et al.  Reduced Frameshift Fidelity and Processivity of HIV-1 Reverse Transcriptase Mutants Containing Alanine Substitutions in Helix H of the Thumb Subdomain (*) , 1995, The Journal of Biological Chemistry.