Parameter identification of periodical signals: Application to measurement and analysis of ocean wave forces

Abstract This article presents an approach based on state observers to identify the parameters of an unknown periodic force exerted on a mechanical system. This approach comprises two stages and can be executed in real time by using only displacement measurements. The first stage goal is the estimation of the coefficients of a Fourier series that approximates the periodic force. From the estimated coefficients, the phase and the amplitude of the signal can be simultaneously computed; and from the estimated force, in a second stage, the frequencies of the signal can be estimated. To perform the tasks at each stage, two state observers were designed. To show the applicability of the proposed approach, the reconstruction of a wave force affecting a marine structure as well as the computation of the amplitude and phase of its spectral components was taken as case of study. The performance of the state observer was examined by means of simulations and off-line tests carried out with experimental data. Such data were obtained by executing laboratory tests and measuring waves in the Caribbean sea.

[1]  Barbara F. La Scala,et al.  Design of an extended Kalman filter frequency tracker , 1996, IEEE Trans. Signal Process..

[2]  Thomas Parisini,et al.  Robust Sinusoid Identification With Structured and Unstructured Measurement Uncertainties , 2014, IEEE Transactions on Automatic Control.

[3]  Alexander G. Loukianov,et al.  A globally convergent estimator for n-frequencies , 2002, IEEE Trans. Autom. Control..

[4]  N. Tsai Numerical modeling of moored buoy systems , 1973 .

[5]  Giuseppe Fedele,et al.  A global frequency estimator based on a frequency-locked-loop filter , 2016, 2016 American Control Conference (ACC).

[6]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2011, IEEE Trans. Autom. Control..

[7]  Hassan Hammouri,et al.  Observer Synthesis for a Class of Nonlinear Control Systems , 1996, Eur. J. Control.

[8]  Jonathan Chauvin,et al.  Reconstruction of the Fourier expansion of inputs of linear time-varying systems , 2010, Autom..

[9]  Aurélien Babarit,et al.  Validation of CFD for the Determination of Damping Coefficients for the Use of Wave Energy Converters Modelling , 2013 .

[10]  Xinkai Chen,et al.  Identification for a signal composed of multiple sinusoids , 2008 .

[11]  Giorgio Bartolini,et al.  Observation and output adaptive tracking for a class of nonlinear non-minimum phase systems , 2016, Int. J. Control.

[12]  Rodolfo Silva Casarín,et al.  Oleaje inducido por el huracán Wilma en Puerto Morelos, Quintana Roo, México , 2009 .

[13]  Mats Leijon,et al.  Hydrodynamic modelling of a direct drive wave energy converter , 2005 .

[14]  Clive A. Greated,et al.  Dynamic behavior of a wave power buoy with interior on-board linear generator , 2017 .

[15]  John S. Anagnostopoulos,et al.  Mechanical design and modeling of a single-piston pump for the novel power take-off system of a wave energy converter , 2016 .

[16]  Alexey A. Bobtsov,et al.  Adaptive filters cascade applied to a frequency identification improvement problem , 2016 .

[17]  K. Park,et al.  Second-order structural identification procedure via state-space-based system identification , 1994 .

[18]  Kentaro Hirata,et al.  Energy-efficient power assist control with periodic disturbance observer and frequency estimator , 2016, 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC).

[19]  António F.O. Falcão,et al.  Nonlinear Dynamics of a Floating Wave Energy Converter Reacting Against the Sea Bottom Through a Tight Mooring Cable , 2010 .

[20]  Yoshiaki Tadokoro,et al.  Improvement of a Fourier coefficient estimation method using an adaptive algorithm and its performance analysis , 2004 .

[21]  Alexey A. Bobtsov,et al.  New approach to the problem of globally convergent frequency estimator , 2008 .

[22]  Ming Hou Amplitude and frequency estimator of a sinusoid , 2005, IEEE Transactions on Automatic Control.

[23]  H. Hammouri,et al.  Observer synthesis for state-affine systems , 1990, 29th IEEE Conference on Decision and Control.

[24]  Jose Sa da Costa,et al.  Linear model identification of the Archimedes Wave Swing , 2007, 2007 International Conference on Power Engineering, Energy and Electrical Drives.

[25]  Juan Carlos,et al.  Estudio del Oleaje Generado por el Huracán Joan en la Costa Caribe Colombiana en 1988, Incluyendo a la Isla Andrés , 2008 .

[26]  Jonathan Chauvin,et al.  Asymptotic reconstruction of the Fourier expansion of inputs of linear time-varying systems with applications , 2010, PSYCO.

[27]  P. J. Sherman,et al.  On the rate of convergence of the ML spectral estimate for identification of sinusoids in noise , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[28]  Alejandro Gutiérrez-Giles,et al.  GPI based velocity/force observer design for robot manipulators. , 2014, ISA transactions.

[29]  J. R. Morison,et al.  The Force Exerted by Surface Waves on Piles , 1950 .

[30]  Aijun Liu,et al.  A New and Accurate Estimator With Analytical Expression for Frequency Estimation , 2016, IEEE Communications Letters.

[31]  Annette von Jouanne,et al.  Application of fluid–structure interaction simulation of an ocean wave energy extraction device , 2008 .

[32]  X. Xia Global frequency estimation using adaptive identifiers , 2002, IEEE Trans. Autom. Control..

[33]  Yu Guo,et al.  Robust adaptive parameter estimation of sinusoidal signals , 2015, Autom..

[34]  Sergio M. Savaresi,et al.  On the parametrization and design of an extended Kalman filter frequency tracker , 2000, IEEE Trans. Autom. Control..

[35]  Paula B. Garcia-Rosa,et al.  Modeling and analysis of a sea wave energy converter , 2015, 2015 IEEE 13th Brazilian Power Electronics Conference and 1st Southern Power Electronics Conference (COBEP/SPEC).

[36]  Palle Andersen,et al.  Model predictive control of a wave energy converter , 2015, 2015 IEEE Conference on Control Applications (CCA).

[37]  Pedro Sánchez,et al.  A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments , 2012, Sensors.

[38]  Steven P. Bastien,et al.  Small Buoys for Energy Harvesting : Experimental and Numerical Modeling Studies , 2011 .

[39]  Alexey A. Bobtsov,et al.  The New Algorithm of Sinusoidal Signal Frequency Estimation , 2013, ALCOSP.

[40]  Riccardo Marino,et al.  Global estimation of n unknown frequencies , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[41]  Artem Kremlev,et al.  Identification of Frequency of Biased Harmonic Signal , 2007, Eur. J. Control.

[42]  Cristina Verde,et al.  Liénard type model of fluid flow in pipelines: Application to estimation , 2015, 2015 12th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[43]  Roberto López-Valcarce,et al.  Prefiltered Pisarenko frequency estimator for multiple real-valued sinusoids , 2009, 2009 17th European Signal Processing Conference.

[44]  Guillaume Mercère,et al.  Identifying second-order models of mechanical structures in physical coordinates: An orthogonal complement approach , 2013, 2013 European Control Conference (ECC).

[45]  Celalettin Dogukan Engin,et al.  Designing and modeling of a point absorber wave energy converter with hydraulic power take-off unit , 2015, 2015 4th International Conference on Electric Power and Energy Conversion Systems (EPECS).

[46]  Lei Zuo,et al.  On The Dynamics and Design of a Two-body Wave Energy Converter , 2016 .

[47]  Walter Munk,et al.  Origin and Generation of Waves , 2010 .

[48]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[49]  Kim Nielsen,et al.  Mathematical and numerical modeling of the AquaBuOY wave energy converter. , 2010 .

[50]  A. Isidori,et al.  A new observer for an unknown harmonic oscillator , 2006 .

[51]  Ming Hou,et al.  Parameter Identification of Sinusoids , 2012, IEEE Transactions on Automatic Control.

[52]  Wenbo He,et al.  A New Frequency Estimator of Sinusoid Based on Interpolated FFT , 2015 .

[53]  S. Bittanti,et al.  Frequency tracking via extended Kalman filter: parameter design , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[54]  Thomas Parisini,et al.  An adaptive observer-based estimator for multi-sinusoidal signals , 2014, 2014 American Control Conference.

[55]  Romeo Ortega,et al.  A globally convergent frequency estimator , 1999, IEEE Trans. Autom. Control..

[56]  Ye Li,et al.  A synthesis of numerical methods for modeling wave energy converter-point absorbers , 2012 .