Integer sequences having prescribed quadratic character

For the odd primes p, = 3, p2 = 5, ■ • -, we determine integer sequences Np such that the Legendre symbol (N/p,) = +1 for all pi S P for a prescribed array of signs ± 1; (i.e., for a prescribed quadratic character). We examine six quadratic characters having special interest and applications. We present tables of these Np and examine some applications, particularly to questions concerning extreme values for the smallest primitive root (of a prime N), the class number of the quadratic field R(J — N), the real Dirichlet L functions, and quadratic character sums.

[1]  D. Shanks Class number, a theory of factorization, and genera , 1971 .

[2]  M. Newman Table of the Class Number h(-p) for p Prime, p ≡3 (mod 4), 101987 ≦p ≦166807 , 1969 .

[3]  E. Ordman Tables of the Class Number for Negative Prime Discriminants , 1969 .

[4]  G. L. Watson Indices and Primitive Roots , 1969 .

[5]  D. Shanks On Gauss’s class number problems , 1969 .

[6]  A. E. Western,et al.  Tables of indices and primitive roots , 1968 .

[7]  M. Newman Note on Partitions Modulo 5 , 1967 .

[8]  H. M. Stark,et al.  A complete determination of the complex quadratic fields of class-number one. , 1967 .

[9]  Daniel Shanks,et al.  Generalized Euler and class numbers , 1967 .

[10]  S. Chowla,et al.  On Sums Involving Quadratic Characters , 1967 .

[11]  Alan Cobham,et al.  The Recognition Problem for the Set of Perfect Squares , 1966, SWAT.

[12]  A. S. Meligy,et al.  On the function , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Daniel Shanks,et al.  Supplementary data and remarks concerning a Hardy-Littlewood conjecture , 1963 .

[14]  W. H. Mills Characters with preassigned values , 1963 .

[15]  Daniel Shanks,et al.  On the conjecture of Hardy & Littlewood concerning the number of primes of the form ²+ , 1960 .

[16]  D. H. Lehmer A sieve problem on“pseudo-squares.” , 1954 .

[17]  C. Siegel,et al.  Über die Classenzahl quadratischer Zahlkörper , 1935 .

[18]  Marshall Hall,et al.  Quadratic residues in factorization , 1933 .

[19]  D. H. Lehmer The Mechanical Combination of Linear Forms , 1928 .

[20]  Maurice Kraitchik,et al.  Recherches sur la théorie des nombres , 1924 .