Integer sequences having prescribed quadratic character
暂无分享,去创建一个
[1] D. Shanks. Class number, a theory of factorization, and genera , 1971 .
[2] M. Newman. Table of the Class Number h(-p) for p Prime, p ≡3 (mod 4), 101987 ≦p ≦166807 , 1969 .
[3] E. Ordman. Tables of the Class Number for Negative Prime Discriminants , 1969 .
[4] G. L. Watson. Indices and Primitive Roots , 1969 .
[5] D. Shanks. On Gauss’s class number problems , 1969 .
[6] A. E. Western,et al. Tables of indices and primitive roots , 1968 .
[7] M. Newman. Note on Partitions Modulo 5 , 1967 .
[8] H. M. Stark,et al. A complete determination of the complex quadratic fields of class-number one. , 1967 .
[9] Daniel Shanks,et al. Generalized Euler and class numbers , 1967 .
[10] S. Chowla,et al. On Sums Involving Quadratic Characters , 1967 .
[11] Alan Cobham,et al. The Recognition Problem for the Set of Perfect Squares , 1966, SWAT.
[12] A. S. Meligy,et al. On the function , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.
[13] Daniel Shanks,et al. Supplementary data and remarks concerning a Hardy-Littlewood conjecture , 1963 .
[14] W. H. Mills. Characters with preassigned values , 1963 .
[15] Daniel Shanks,et al. On the conjecture of Hardy & Littlewood concerning the number of primes of the form ²+ , 1960 .
[16] D. H. Lehmer. A sieve problem on“pseudo-squares.” , 1954 .
[17] C. Siegel,et al. Über die Classenzahl quadratischer Zahlkörper , 1935 .
[18] Marshall Hall,et al. Quadratic residues in factorization , 1933 .
[19] D. H. Lehmer. The Mechanical Combination of Linear Forms , 1928 .
[20] Maurice Kraitchik,et al. Recherches sur la théorie des nombres , 1924 .