Efficient document image binarization using heterogeneous computing and parameter tuning

[1]  Mohamed Akil,et al.  GPU parallel implementation of the new hybrid binarization based on Kmeans method (HBK) , 2018, Journal of Real-Time Image Processing.

[2]  Ramazan Savas Aygün,et al.  Super-Thresholding: Supervised Thresholding of Protein Crystal Images , 2017, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[3]  Konstantinos Zagoris,et al.  ICFHR2016 Handwritten Document Image Binarization Contest (H-DIBCO 2016) , 2016, 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR).

[4]  Yuefang Gao,et al.  CUDA-accelerated fast Sauvola’s method on Kepler architecture , 2015, Multimedia tools and applications.

[5]  Rupinder Kaur,et al.  Review of Robust Document Image BINARIZATION Technique for Degraded Document Images , 2015 .

[6]  Marcus Liwicki,et al.  Document Image Binarization using LSTM: A Sequence Learning Approach , 2015, HIP@ICDAR.

[7]  Carlos A. B. Mello,et al.  Parameter tuning for document image binarization using a racing algorithm , 2015, Expert Syst. Appl..

[8]  Clément Chatelain,et al.  Exploring multiple feature combination strategies with a recurrent neural network architecture for off-line handwriting recognition , 2015, Electronic Imaging.

[9]  Li Chen,et al.  JF-Cut: A Parallel Graph Cut Approach for Large-Scale Image and Video , 2015, IEEE Transactions on Image Processing.

[10]  Alicia Fornés,et al.  A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance , 2014, 2014 22nd International Conference on Pattern Recognition.

[11]  Mohamed Akil,et al.  A new hybrid binarization method based on Kmeans , 2014, 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP).

[12]  Carlos A. B. Mello,et al.  A new thresholding algorithm for document images based on the perception of objects by distance , 2014, Integr. Comput. Aided Eng..

[13]  Josep Lladós,et al.  Boosting the handwritten word spotting experience by including the user in the loop , 2014, Pattern Recognit..

[14]  Nicholas R. Howe,et al.  Document binarization with automatic parameter tuning , 2013, International Journal on Document Analysis and Recognition (IJDAR).

[15]  Ioannis Pratikakis,et al.  ICDAR 2013 Document Image Binarization Contest (DIBCO 2013) , 2013, 2013 12th International Conference on Document Analysis and Recognition.

[16]  Volkmar Frinken,et al.  Handwriting recognition in historical documents using very large vocabularies , 2013, HIP '13.

[17]  Mohamed Cheriet,et al.  A learning framework for the optimization and automation of document binarization methods , 2013, Comput. Vis. Image Underst..

[18]  Ioannis Pratikakis,et al.  ICFHR 2012 Competition on Handwritten Document Image Binarization (H-DIBCO 2012) , 2012, 2012 International Conference on Frontiers in Handwriting Recognition.

[19]  Rahul Sharma,et al.  Parallel Implementation of Souvola’s Binarization Approach on GPU , 2011 .

[20]  Rahul Sharma,et al.  Parallel Implementation of Niblack’s Binarization Approach on CUDA , 2011 .

[21]  Nicholas R. Howe,et al.  A Laplacian Energy for Document Binarization , 2011, 2011 International Conference on Document Analysis and Recognition.

[22]  Ioannis Pratikakis,et al.  ICDAR 2011 Document Image Binarization Contest (DIBCO 2011) , 2011, 2011 International Conference on Document Analysis and Recognition.

[23]  Daniel Díaz-Pernil,et al.  A Parallel Implementation of the Thresholding Problem by Using Tissue-Like P Systems , 2011, CAIP.

[24]  Ioannis Pratikakis,et al.  DIBCO 2009: document image binarization contest , 2011, International Journal on Document Analysis and Recognition (IJDAR).

[25]  Ioannis Pratikakis,et al.  H-DIBCO 2010 - Handwritten Document Image Binarization Competition , 2010, 2010 12th International Conference on Frontiers in Handwriting Recognition.

[26]  John E. Stone,et al.  OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems , 2010, Computing in Science & Engineering.

[27]  Hemant Ishwaran,et al.  Random Survival Forests , 2008, Wiley StatsRef: Statistics Reference Online.

[28]  P. J. Narayanan,et al.  CUDA cuts: Fast graph cuts on the GPU , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[29]  T. Hothorn,et al.  Simultaneous Inference in General Parametric Models , 2008, Biometrical journal. Biometrische Zeitschrift.

[30]  Thomas M. Breuel,et al.  Efficient implementation of local adaptive thresholding techniques using integral images , 2008, Electronic Imaging.

[31]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields , 2006, ECCV.

[32]  Ioannis Pratikakis,et al.  Adaptive degraded document image binarization , 2006, Pattern Recognit..

[33]  P. Kohli,et al.  Efficiently solving dynamic Markov random fields using graph cuts , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[34]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[35]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Matti Pietikäinen,et al.  Adaptive document image binarization , 2000, Pattern Recognit..

[37]  Davi Geiger,et al.  Segmentation by grouping junctions , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[38]  Ingemar J. Cox,et al.  A maximum-flow formulation of the N-camera stereo correspondence problem , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[39]  A. Goldberg,et al.  A new approach to the maximum-flow problem , 1988, JACM.

[40]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[42]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[43]  D. R. Fulkerson,et al.  Flows in Networks , 1963 .

[44]  N. Lavesson,et al.  Efficient Binarization for Historical Document Analysis , 2016 .

[45]  Nadine Eberhardt,et al.  Computer Organization And Design 2nd Edition , 2016 .

[46]  Ioannis Pratikakis,et al.  ICFHR2014 Competition on Handwritten Document Image Binarization (H-DIBCO 2014) , 2014, 2014 14th International Conference on Frontiers in Handwriting Recognition.

[47]  Brij Mohan Singh,et al.  Parallel Implementation of Otsu’s Binarization Approach on GPU , 2011 .

[48]  Udaya B. Kogalur,et al.  Random Survival Forests for R , 2007 .

[49]  Rae-Hong Park,et al.  Document image binarization based on topographic analysis using a water flow model , 2002, Pattern Recognit..

[50]  Richard J. Anderson,et al.  Goldberg's Algorithm for Maximum Flow in Perspective: A Computational Study , 1991, Network Flows And Matching.

[51]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[52]  Wayne Niblack,et al.  An introduction to digital image processing , 1986 .

[53]  Nobuyuki Otsu,et al.  ATlreshold Selection Method fromGray-Level Histograms , 1979 .

[54]  N. Otsu A threshold selection method from gray level histograms , 1979 .