Nanoengineering of cathode layers for solid oxide fuel cells to achieve superior power densities

[1]  K. Yamaji,et al.  Leveraging catalytic effects of heterointerfaces through multilayering for superior cathode performance , 2020 .

[2]  N. Menzler,et al.  Post-test characterization of a solid oxide fuel cell after more than 10 years of stack testing , 2020 .

[3]  S. Barnett,et al.  Boosting solid oxide fuel cell performance via electrolyte thickness reduction and cathode infiltration , 2020, Journal of Materials Chemistry A.

[4]  O. Guillon,et al.  Metal-Supported Solid Oxide Fuel Cells with Exceptionally High Power Density for Range Extender Systems , 2020, Cell Reports Physical Science.

[5]  N. Menzler,et al.  Enhanced catalytic activity of nanostructured, A-site deficient (La0.7Sr0.3)0.95(Co0.2Fe0.8)O3−δ for SOFC cathodes , 2019, Journal of Materials Chemistry A.

[6]  S. Akkurt,et al.  Fabrication of LSCF and LSCF-GDC nanocomposite thin films using polymeric precursors , 2019, Ionics.

[7]  N. Lymperopoulos,et al.  The Status of SOFC and SOEC R&D in the European Fuel Cell and Hydrogen Joint Undertaking Programme , 2019, ECS Transactions.

[8]  Daishu Hara Toward a Hydrogen Society — Introduction of Representative Projects in Japan , 2019, ECS Transactions.

[9]  Sergii Pylypko,et al.  Elcogen – Next Generation Solid Oxide Cell and Stack Technology , 2019, ECS Transactions.

[10]  Shailesh D Vora,et al.  Overview of U.S. Department of Energy Office of Fossil Energy’s Solid Oxide Fuel Cell Program for FY2019 , 2019, ECS Transactions.

[11]  S. Mukerjee,et al.  Latest Results and Commercialization of the Ceres Power SteelCell® Technology Platform , 2019, ECS Transactions.

[12]  K. Yamaji,et al.  Oxygen surface exchange properties and surface segregation behavior of nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ thin film cathodes. , 2019, Physical chemistry chemical physics : PCCP.

[13]  T. Ishihara,et al.  Nano strain induced double columnar oxide as highly active oxygen-dissociation electrode for Ni-Fe metal supported solid oxide fuel cells , 2019, Nano Energy.

[14]  Lisa M. Jackson,et al.  In-situ monitoring of temperature distribution in operating solid oxide fuel cell cathode using proprietary sensory techniques versus commercial thermocouples , 2018, Applied Energy.

[15]  K. Yamaji,et al.  Multilayered LSC and GDC: An approach for designing cathode materials with superior oxygen exchange properties for solid oxide fuel cells , 2018, Nano Energy.

[16]  Jun Kyu Kim,et al.  Sr Segregation in Perovskite Oxides: Why It Happens and How It Exists , 2018, Joule.

[17]  E. R. Losilla,et al.  LSCF-CGO nanocomposite cathodes deposited in a single step by spray-pyrolysis , 2017 .

[18]  E. Ivers-Tiffée,et al.  Correlative tomography at the cathode/electrolyte interfaces of solid oxide fuel cells , 2017 .

[19]  E. Siebert,et al.  Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3-δ/Gd0.1Ce0.9O2-δ composite electrode operated under solid oxide electrolysis and fuel cell conditions , 2017 .

[20]  N. Shikazono,et al.  Recent Achievements of NEDO Durability Project with an Emphasis on Correlation Between Cathode Overpotential and Ohmic Loss , 2017 .

[21]  E. Ivers-Tiffée,et al.  Practical Guidelines for Reliable Electrochemical Characterization of Solid Oxide Fuel Cells , 2017 .

[22]  E. Djurado,et al.  Rational design of hierarchically nanostructured electrodes for solid oxide fuel cells , 2016 .

[23]  Bilge Yildiz,et al.  Improved chemical and electrochemical stability of perovskite oxides with less reducible cations at the surface. , 2016, Nature materials.

[24]  W. Weber,et al.  Microstructure design for fast oxygen conduction , 2016 .

[25]  Mogens Bjerg Mogensen,et al.  Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers , 2016, Nature Energy.

[26]  Yan Chen,et al.  Segregated Chemistry and Structure on (001) and (100) Surfaces of (La1–xSrx)2CoO4 Override the Crystal Anisotropy in Oxygen Exchange Kinetics , 2015 .

[27]  Ji-won Son,et al.  Influence of current collector and cathode area discrepancy on performance evaluation of solid oxide fuel cell with thin-film-processed cathode , 2014 .

[28]  N. Sabaté,et al.  Porous La0.6Sr0.4CoO3−δ thin film cathodes for large area micro solid oxide fuel cell power generators , 2014 .

[29]  K. Yoon,et al.  Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes , 2013 .

[30]  Toshio Suzuki,et al.  High performance of La0.6Sr0.4Co0.2Fe0.8O3–Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells , 2013 .

[31]  Hans Peter Buchkremer,et al.  Novel high-performance solid oxide fuel cells with bulk ionic conductance dominated thin-film electrolytes , 2012 .

[32]  E. Slamovich,et al.  Single solution spray pyrolysis of La0.6Sr0.4Co0.2Fe0.8O3 − δ–Ce0.8Gd0.2O1.9 (LSCF–CGO) thin film cathodes , 2012 .

[33]  Ellen Ivers-Tiffée,et al.  Nanoscaled La0.6Sr0.4CoO3−δ as intermediate temperature solid oxide fuel cell cathode: Microstructure and electrochemical performance , 2011 .

[34]  J. Martynczuk,et al.  Tailoring of LaxSr1‐xCoyFe1‐yO3‐δ Nanostructure by Pulsed Laser Deposition , 2011 .

[35]  E. Wachsman,et al.  Determination of Surface Exchange Coefficients of LSM, LSCF, YSZ, GDC Constituent Materials in Composite SOFC Cathodes , 2011 .

[36]  P. Voorhees,et al.  Time-dependent performance changes in LSCF-infiltrated SOFC cathodes: The role of nano-particle coarsening , 2011 .

[37]  S. Chan,et al.  Effects of transition metal oxides on the densification of thin-film GDC electrolyte and on the performance of intermediate-temperature SOFC , 2010 .

[38]  J. Kilner,et al.  Oxygen tracer diffusion and surface exchange kinetics in La0.6Sr0.4CoO3 − δ , 2010 .

[39]  Xiongwen Zhang,et al.  A review of integration strategies for solid oxide fuel cells , 2010 .

[40]  A. Manthiram,et al.  Vertically Aligned Nanocomposite Thin Films as a Cathode/Electrolyte Interface Layer for Thin‐Film Solid Oxide Fuel Cells , 2009 .

[41]  Juergen Fleig,et al.  Optimized La0.6Sr0.4CoO3–δ Thin‐Film Electrodes with Extremely Fast Oxygen‐Reduction Kinetics , 2009 .

[42]  E. Ivers-Tiffée,et al.  Nanoscaled ( La0.5Sr0.5 ) CoO3 − δ Thin Film Cathodes for SOFC Application at 500 ° C < T < 700 ° C , 2008 .

[43]  S. Chan,et al.  Development of LSCF–GDC composite cathodes for low-temperature solid oxide fuel cells with thin film GDC electrolyte , 2008 .

[44]  Harumi Yokokawa,et al.  Enhancement of oxygen exchange at the hetero interface of (La,Sr)CoO3/(La,Sr)2CoO4 in composite ceramics , 2008 .

[45]  L. Gauckler,et al.  Microstructures of CGO and YSZ Thin Films by Pulsed Laser Deposition , 2008 .

[46]  P. Muralt,et al.  Oxygen reduction at thin dense La0.52Sr0.48Co0.18Fe0.82O3–δ electrodes , 2007 .

[47]  Ludwig J. Gauckler,et al.  Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis , 2007 .

[48]  Jürgen Fleig,et al.  Impedance spectroscopic study on well-defined (La,Sr)(Co,Fe)O3-δ model electrodes , 2006 .

[49]  H. Anderson,et al.  Electrical Conductivity and Stability of Gd-doped Ceria/Y-doped Zirconia Ceramics and Thin Films , 2004 .

[50]  M. Bram,et al.  Dual-Phase Cathodes for Metal-Supported Solid Oxide Fuel Cells: Processing, Performance, Durability , 2019, Journal of The Electrochemical Society.

[51]  E. Ivers-Tiffée,et al.  Nature and Functionality of La0.58Sr0.4Co0.2Fe0.8O3-δ / Gd0.2Ce0.8O2-δ / Y0.16Zr0.84O2-δ Interfaces in SOFCs , 2018 .

[52]  O. Guillon,et al.  High-Performance Metal-Supported Solid Oxide Fuel Cells by Advanced Cathode Processing , 2017 .

[53]  E. Ivers-Tiffée,et al.  Hetero-Interfaces at Nanoscaled (La,Sr)CoO3-δ Thin-Film Cathodes Enhancing Oxygen Surface-Exchange Properties , 2013 .

[54]  Subhash C. Singhal,et al.  Solid oxide fuel cell commercialization, research and challenges.. , 2009 .