Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization

Ant colony optimisation (ACO) is a nature-inspired, population-based metaheuristic that has been used to solve a wide variety of computationally hard problems. In order to take full advantage of the inherently stochastic and distributed nature of the method, we describe a parallelization strategy that leverages these features on heterogeneous and large-scale, massively-parallel hardware systems. Our approach balances workload effectively, by dynamically assigning jobs to heterogeneous resources which then run ACO implementations using different search strategies. Our experimental results confirm that we can obtain significant improvements in terms of both solution quality and energy expenditure, thus opening up new possibilities for the development of metaheuristic-based solutions to “real world” problems on high-performance, energy-efficient contemporary heterogeneous computing platforms.

[1]  Rezaur Rahman Xeon Phi System Software , 2013 .

[2]  Rezaur Rahman Intel® Xeon Phi™ Coprocessor Architecture and Tools , 2013, Apress.

[3]  Martyn Amos,et al.  Enhancing GPU parallelism in nature-inspired algorithms , 2012, The Journal of Supercomputing.

[4]  Samuel Williams,et al.  Hardware/software co-design for energy-efficient seismic modeling , 2011, 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC).

[5]  Rob Williams Hardware/software co-design , 2006 .

[6]  Wayne H. Wolf A Decade of Hardware/Software Codesign , 2003, Computer.

[7]  Baozhen Yao,et al.  Production , Manufacturing and Logistics An improved ant colony optimization for vehicle routing problem , 2008 .

[8]  M. Dorigo,et al.  The Ant Colony Optimization MetaHeuristic 1 , 1999 .

[9]  Chun-Liang Lin,et al.  Block-Layout Design Using MAX–MIN Ant System for Saving Energy on Mass Rapid Transit Systems , 2009, IEEE Transactions on Intelligent Transportation Systems.

[10]  Thomas Stützle,et al.  Ant Colony Optimization: Overview and Recent Advances , 2018, Handbook of Metaheuristics.

[11]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[12]  Kevin Skadron,et al.  Scalable parallel programming , 2008, 2008 IEEE Hot Chips 20 Symposium (HCS).

[13]  Komarudin,et al.  Applying Ant System for solving Unequal Area Facility Layout Problems , 2010, Eur. J. Oper. Res..

[14]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[15]  Marc Gravel,et al.  Parallel Ant Colony Optimization on Graphics Processing Units , 2013, J. Parallel Distributed Comput..

[16]  Mark Horowitz,et al.  Energy dissipation in general purpose microprocessors , 1996, IEEE J. Solid State Circuits.

[17]  Duoqian Miao,et al.  A rough set approach to feature selection based on ant colony optimization , 2010, Pattern Recognit. Lett..

[18]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[19]  David S. Johnson,et al.  The Traveling Salesman Problem: A Case Study in Local Optimization , 2008 .

[20]  John Shalf,et al.  Rethinking Hardware-Software Codesign for Exascale Systems , 2011, Computer.

[21]  Alain J. Martin Towards an energy complexity of computation , 2001, Inf. Process. Lett..

[22]  Ruay-Shiung Chang,et al.  An ant algorithm for balanced job scheduling in grids , 2009, Future Gener. Comput. Syst..

[23]  Martyn Amos,et al.  Parallelization strategies for ant colony optimisation on GPUs , 2011, 2011 IEEE International Symposium on Parallel and Distributed Processing Workshops and Phd Forum.

[24]  Weihang Zhu,et al.  Parallel ant colony for nonlinear function optimization with graphics hardware acceleration , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[25]  Grzegorz Rozenberg,et al.  Handbook of Natural Computing , 2011, Springer Berlin Heidelberg.

[26]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[27]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[28]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[29]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Marco Platzner,et al.  Hardware-Software Codesign , 1997, IEEE Des. Test Comput..

[31]  Paul I. Pénzes,et al.  Energy-delay efficiency of VLSI computations , 2002, GLSVLSI '02.

[32]  S. S. Sengupta,et al.  The traveling salesman problem , 1961 .

[33]  Martín Pedemonte,et al.  A survey on parallel ant colony optimization , 2011, Appl. Soft Comput..

[34]  Thomas Stützle,et al.  Parallel Ant Colony Optimization for the Traveling Salesman Problem , 2006, ANTS Workshop.

[35]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[36]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[37]  Enrique Alba,et al.  Parallel metaheuristics: recent advances and new trends , 2012, Int. Trans. Oper. Res..

[38]  Martyn Amos,et al.  Enhancing data parallelism for Ant Colony Optimization on GPUs , 2013, J. Parallel Distributed Comput..

[39]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[40]  Jesús Carretero,et al.  Optimizations to enhance sustainability of MPI applications , 2014, EuroMPI/ASIA.

[41]  Thomas Stützle,et al.  Parallelization Strategies for Ant Colony Optimization , 1998, PPSN.

[42]  Forschungsbericht AIDA Parallelization Strategies for Ant Colony Optimization Parallelization Strategies for Ant Colony Optimization , 1998 .

[43]  Oscar Castillo,et al.  Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation , 2009, Appl. Soft Comput..